

Algorithm for Free Gas Elastic Scattering without Rejection Sampling

Elliott Biondo¹, Vladimir Sobes², Andrew Holcomb¹, Steven Hamilton¹, Thomas Evans¹

¹Oak Ridge National Laboratory ²University of Tennessee

October 5, 2021

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Introduction

GPU computing

- Leadership-class supercomputers rely on GPUs for the majority of their processing power
- GPUs, unlike CPUs, use a Single Instruction Multiple Data (SIMD) paradigm
 - A kernel launch involves deploying a large number of independent threads
 - A single "slow" thread can prevent a kernel launch from completing, creating a performance bottleneck
- Many Monte Carlo (MC) radiation transport algorithms must be reworked to optimize GPU execution

Summit (2018) 200 petaflops 95% from GPUs ↓

Frontier (2021) >1500 petaflops High % from GPUs

Free gas elastic scattering scenario

- During an MC random walk, a neutron with a velocity \boldsymbol{v}_i undergoes a collision
- The collision type is sampled to be an elastic scatter
- How do we sample the target velocity (\mathbf{v}_t) of the nucleus?

- \mathbf{v}_t follows a Maxwellian distribution according to the temperature of the medium
- Not all \boldsymbol{v}_t are equally likely to cause a collision

Likely target velocities

• The relative energy (*E_r*) of a scattering event is given by

$$E_r = \frac{1}{2}m|\mathbf{v_i} - \mathbf{v_t}|^2$$

where m is the neutron mass

- v_t vectors that cause E_r to be closer to a resonance are more likely to cause scattering events
- This effect can significantly impact MC results [1]

Case 1: flat cross section near E_i

Case 2: Resonance with an energy just above E_i

Case 3: Resonance with an energy just below E_i

Rejection sampling algorithms for free gas elastic scattering

- Doppler Broadening Rejection Correction (DBRC) [2] and Relative Velocity Sampling (RVS) [3]
- DBRC: Rejection sample a possible v_t from a Maxwellian, then accept/reject based on the likelihood that v_t causes a collision
- High sampling efficiency (\sim 97% for DBRC, \sim 22% for RVS) in regions in which the cross section is relatively flat [3]
- Low sampling efficiencies (< 1%) near resonances [3]
- These disparate rejection sampling efficiencies degrade the GPU particle tracking rate
- Shift MC code [1]: DBRC was found to reduce the GPU tracking rate by 4.9 $\times,$ compared to only 5.3% on the CPU

Summary

- A new method for sampling v_t without rejection sampling:
 - 1 Step 1: Sample E_r using windowed multipole data
 - 2 Step 2: Sample vt based on Er
- Validation
- Preliminary performance results
- Conclusion

Step 1: Sample *E_r*

Relative energy PDF and CDF

PDF of the E_r of the collision [4], in terms of $u = \sqrt{E}$ and $\xi \propto \sqrt{T}$:

$$f(u_r) = \left(e^{\frac{-(u_i-u_r)^2}{\xi^2}} - e^{\frac{-(u_i+u_r)^2}{\xi^2}}\right) u_r^2 \sigma(u_r)$$

The CDF is then:

$$F(u_r) = \frac{\int_{0}^{u_r} f(u_r') \, \mathrm{d}u_r'}{\int_{0}^{\infty} f(u_r) \, \mathrm{d}u_r} = \frac{\int_{0}^{u_r} \left(e^{\frac{-(u_i - u_r')^2}{\xi^2}} - e^{\frac{-(u_i + u_r')^2}{\xi^2}} \right) u_r'^2 \sigma(u_r') \, \mathrm{d}u_r'}{\xi \sqrt{\pi} u_i^2 \sigma_D(u_i, \xi)}$$

Goal: obtain an expression for the 0 K cross section (σ) that is:

1 closed form

2 allows the CDF equation to be integrated

6

Multipole data representation

Provides an expression for the thermal/epithermal σ in terms of:

- poles (p): singularities in the complex plane
- corresponding residues (r), proportional to the path integrals around poles

30

40

At T = 0 K, the cross section is given by [5]:

$$\sigma(u) = \frac{1}{u^2} \sum_k \mathbf{Re} \left(\frac{2r_k}{p_k - u} \right)$$

Multipole data representation

Provides an expression for the thermal/epithermal σ in terms of:

- poles (p): singularities in the complex plane
- corresponding residues (r), proportional to the path integrals around poles

At T = 0 K, the cross section is given by [5]:

$$\sigma(u) = \frac{1}{u^2} \sum_{k} \mathbf{Re} \left(\frac{2r_k}{p_k - u} \right) \quad \text{Computationally expensive}$$

Windowed Multipole Method

Approximate "far away" poles with a polynomial [6]:

$$\sigma(u) = \underbrace{\frac{1}{u^2} \sum_{k \in \text{window}} \operatorname{Re}\left(\frac{2r_k}{p_k - u}\right)}_{\text{poles}} + \underbrace{\frac{1}{u^2} \sum_{n=0}^{N-1} a_n (c_1(u - c_0))^n}_{\text{polynomial}}$$

This does not provide an integrable PDF

Windowed Multipole Method

Approximate "far away" poles with a polynomial [6]:

$$\sigma(u) = \underbrace{\frac{1}{u^2} \sum_{k \in \text{window}} \operatorname{Re}\left(\frac{2r_k}{p_k - u}\right)}_{\text{poles}} + \underbrace{\frac{1}{u^2} \sum_{n=0}^{N-1} a_n (c_1(u - c_0))^n}_{\text{polynomial}}$$

This does not provide an integrable PDF

For free gas elastic scattering, use a Gaussian approximation:

$$\sigma(u) = \frac{1}{u^2} \sum_{k} \sum_{j} \left[\underbrace{\frac{h_{s,k,j} e^{\frac{-(u-u_k)^2}{w_{s,k,j}^2}}}{symmetric}}_{symmetric} + \underbrace{\frac{h_{a,k,j} (u-u_k) e^{\frac{-(u-u_k)^2}{w_{a,k,j}^2}}}{antisymmetric}}_{antisymmetric} \right] + \frac{1}{u^2} \sum_{n=0}^{N-1} a_n (c_1 (u-c_0))^n$$

tional Laboratory

Solved CDF

$$F(u_r) = \frac{1}{\xi \sqrt{\pi} u_i^2 \sigma_D(u_i, \xi)} \left[\sum_k \sum_j h_{s,k,j} I_s(u_r) + \sum_k \sum_j h_{a,k,j} I_a(u_r) + \sum_n a_n I_{p,n}(u_r) \right]$$

Closed-form expression for $I_s(u_r)$, $I_a(u_r)$, and $I_{p,n}(u_r)$ are found in the paper. To sample this CDF:

- 1 Select a random variate ε
- 2 Solve for u_r via root-finding:

$$F(u_r) - \varepsilon = 0 \tag{1}$$

(2)

3 Final answer:

$$E_r = u_r^2$$

Step 2: Sample v_t

PDF for z component of v_t

- 1 Maxwellian PDF of target speed in the z-direction
- 2 Maxwellian PDF of target speed in the orthogonal direction in cyl. coordinates
- 3 Ratio of the rate of change in the *z*-direction relative to the rate of change along the arc length of the sphere

CDF for z component of v_t

Convert the PDF to a CDF:

$$F(s_{t,z}) = \frac{\int\limits_{s_{i,z}-s_r}^{s_{t,z}} f(s_{t,z}') \, \mathrm{d}s_{t,z}'}{\int\limits_{s_{i,z}-s_r}^{s_{i,z}+s_r} f(s_{t,z}) \, \mathrm{d}s_{t,z}} = \frac{e^{\frac{-Ms_{i,z}s_{t,z}}{k_BT}} - e^{\frac{-Ms_{i,z}(s_{i,z}-s_r)}{k_BT}}}{e^{\frac{-Ms_{i,z}(s_{i,z}+s_r)}{k_BT}} - e^{\frac{-Ms_{i,z}(s_{i,z}-s_r)}{k_BT}}}$$

This CDF is invertible:

$$s_{t,z} = F^{-1}(\varepsilon) = \frac{-k_B T}{Ms_{i,z}} \log \left(\varepsilon e^{\frac{-Ms_{i,z}(s_{i,z}+s_r)}{k_B T}} + (1-\varepsilon) e^{\frac{-Ms_{i,z}(s_{i,z}-s_r)}{k_B T}} \right)$$

Once $s_{t,z}$ is sampled, $cos(\theta) = \frac{s_{t,z}}{s_t}$, and the azimuthal angle is sampled uniformly

Validation

Prototype implementation

- Implemented in Python:
 - "Pole" method for free gas elastic scattering
 - Standard DBRC method
- CPU execution only

Target energy PDF comparison

- E = 6.57 eV, below the 6.67 eV resonance of ²³⁸U, T = 1200 K
- Black lines: expected results (DBRC)

Neutron exit energy PDF comparison

- E = 6.67 eV, coincident with the 6.67 eV resonance of ²³⁸U, T = 1200 K
- Black lines: expected results (DBRC)
- Results match those in the literature [7]

Preliminary timing results

CPU timing results: far from resonance

 $E_i = 6.3$ eV, far from the 6.67 eV ²³⁸U resonance, T = 300 K

DBRC is > 10 \times faster then pole for a flat σ

CPU timing results: near resonance

 $E_i = 6.44$ eV, on the edge of the 6.67 eV ²³⁸U resonance, T = 300 K

Pole is consistently low. DBRC has a long tail \rightarrow poor GPU performance?

CPU timing results: on resonance

 $E_i = 6.67$ eV, coincident with the 6.67 eV ²³⁸U resonance, T = 300

Same outcome as the "far from resonance" case

Summary of results

- Pole: worst case single sample compute time is \sim 15 ms on the CPU
- DBRC: worst case single sample compute time is \sim 40 ms on the CPU
- GPU performance may be related to worst case CPU timing results

Conclusion

Conclusion

- A new free gas elastic scattering method without rejection sampling is proposed
 - Enabled by the Windowed Multipole method
 - Involves one root-finding step and one direct sampling step
- Preliminary results indicate this method may outperform existing methods on the GPU
- Future work:
 - Explore further approximations to eliminate the root-finding step
 - Implement and test on the GPU

Acknowledgments

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of two U.S. Department of Energy organizations (Office of Science and the National Nuclear Security Administration) responsible for the planning and preparation of a capable exascale ecosystem, including software, applications, hardware, advanced system engineering, and early testbed platforms, in support of the nation's exascale computing imperative.

Questions?

References

- Tara M. Pandya, Seth R. Johnson, Thomas M. Evans, Gregory G. Davidson, Steven P. Hamilton, and Andrew T. Godfrey. Implementation, capabilities, and benchmarking of Shift, a massively parallel Monte Carlo radiation transport code. *Journal of Computational Physics*, 308:239–272, March 2016.
- [2] B. Becker, R. Dagan, and G. Lohnert. Proof and implementation of the stochastic formula for ideal gas, energy dependent scattering kernel. Annals of Nuclear Energy, 36(4):470–474, 2009.
- [3] Paul K. Romano and Jonathan A. Walsh. An improved target velocity sampling algorithm for free gas elastic scattering. Annals of Nuclear Energy, 114:318 – 324, 2018.
- [4] F. H. Fröhner. Applied neutron resonance theory. Technical Report KfK-2669, Kernforschungszentrum Karlsruhe, 1978.
- [5] R. N. Hwang. A rigorous pole representation of multilevel cross sections and its practical applications. *Nuclear Science and Engineering*, 96(3):192–209, 1987.
- [6] C. Josey, P. Ducru, B. Forget, and K. Smith. Windowed multipole for cross section Doppler broadening. Journal of Computational Physics, 307:715–727, 2016.
- [7] Bjorn Becker. On the influence of the resonance scattering treatment in Monte Carlo codes on high temperature reactor characteristics. PhD thesis, University of Stuttgart, 2010.

Backup Slides

Solution to $I_{s}(u_{r})$ and $I_{a}(u_{r})$

$$I_{s}(u_{r}) = \frac{e^{\lambda_{3}^{+}}\sqrt{\pi}}{2\sqrt{\lambda_{1}}} \left(\operatorname{erf}(\sqrt{\lambda_{1}}(\lambda_{2}^{+}+u_{r})) - \operatorname{erf}(\sqrt{\lambda_{1}}\lambda_{2}^{+}) \right) \\ + \frac{e^{\lambda_{3}^{-}}\sqrt{\pi}}{2\sqrt{\lambda_{1}}} \left(\operatorname{erf}(\sqrt{\lambda_{1}}(\lambda_{2}^{-}+u_{r})) - \operatorname{erf}(\sqrt{\lambda_{1}}\lambda_{2}^{-}) \right)$$

$$I_{a}(u_{r}) = \frac{-e^{\lambda_{3}^{-}}}{2\lambda_{1}} \left(e^{-\lambda_{1}(u_{r}+\lambda_{2}^{-})^{2}} - e^{-\lambda_{1}(\lambda_{2}^{-})^{2}} \right) + \frac{e^{\lambda_{3}^{+}}}{2\lambda_{1}} \left(e^{-\lambda_{1}(u_{r}+\lambda_{2}^{+})^{2}} - e^{-\lambda_{1}(\lambda_{2}^{+})^{2}} \right) \\ - \frac{e^{\lambda_{3}^{-}}\sqrt{\pi}(\lambda_{2}^{-}+u_{k})}{2\sqrt{\lambda_{1}}} \left(\operatorname{erf}(\sqrt{\lambda_{1}}(\lambda_{2}^{-}+u_{r})) - \operatorname{erf}(\sqrt{\lambda_{1}}\lambda_{2}^{-}) \right) \\ + \frac{e^{\lambda_{3}^{+}}\sqrt{\pi}(\lambda_{2}^{+}+u_{k})}{2\sqrt{\lambda_{1}}} \left(\operatorname{erf}(\sqrt{\lambda_{1}}(\lambda_{2}^{+}+u_{r})) - \operatorname{erf}(\sqrt{\lambda_{1}}\lambda_{2}^{+}) \right) \right)$$

 λ values for $I_{s}(u_{r})$ and $I_{a}(u_{r})$

$$\begin{split} \lambda_1 &= \left(\frac{1}{\xi^2} + \frac{1}{w_k^2}\right) \\ \lambda_2 &= \frac{1}{\lambda_1} \left(\frac{\delta u_i}{\xi^2} - \frac{u_k}{w_k^2}\right) \\ \lambda_3 &= -\frac{u_k^2}{w_k^2} - \frac{u_i^2}{\xi^2} + \frac{1}{\lambda_1} \left(\frac{\delta u_i}{\xi^2} - \frac{u_k}{w_k^2}\right)^2 \end{split}$$

where $\delta=\pm 1,$ and λ^+ and λ^- indicate the value of δ

Solution to $I_{p,n}(u_r)$

$$I_{p,n}(u_r) = J_n(u_r, -1) - J_n(u_r, 1),$$

where J_n values are given by:

$$\begin{split} J_n(u_r,\delta) &= \frac{c_1^2 \xi^2 (n-1)}{2} J_{n-2}(u_r,\delta) - c_1 (c_0 + \delta u_i) J_{n-1}(u_r,\delta) \\ &- \frac{c_1^2 \xi^2}{2c_1} \Big((c_1 (u_r - c_0))^{n-1} e^{\frac{-(u_r + \delta u_i))^2}{\xi^2}} - (-c_0 c_1)^{n-1} e^{\frac{-(\delta u_i)^2}{\xi^2}} \Big), \\ J_0(u_r,\delta) &= \frac{\sqrt{\pi} \xi}{2} \left[\operatorname{erf} \left(\frac{\delta u_i + u_r}{\xi} \right) - \operatorname{erf} \left(\frac{\delta u_i}{\xi} \right) \right], \\ J_1(u_r,\delta) &= \frac{-c_1 \xi^2}{2} \left(e^{\frac{-(u_r + \delta u_i)^2}{\xi^2}} - e^{\frac{-(\delta u_i)^2}{\xi^2}} \right) - c_1 (c_0 + \delta u_i) J_0(u_r,\delta). \end{split}$$

