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Introduction



GPU computing
• Leadership-class supercomputers rely on GPUs for the

majority of their processing power

• GPUs, unlike CPUs, use a Single Instruction Multiple
Data (SIMD) paradigm

I A kernel launch involves deploying a large number of
independent threads

I A single “slow” thread can prevent a kernel launch from
completing, creating a performance bottleneck

• Many Monte Carlo (MC) radiation transport algorithms
must be reworked to optimize GPU execution

Summit (2018)
200 petaflops
95% from GPUs

↓

Frontier (2021)
>1500 petaflops
High % from GPUs
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Free gas elastic scattering scenario

• During an MC random walk, a neutron with a velocity vi undergoes a collision

• The collision type is sampled to be an elastic scatter

• How do we sample the target velocity (vt) of the nucleus?

vi

vt
?

?

?

???

?

?

• vt follows a Maxwellian distribution according to the temperature of the medium

• Not all vt are equally likely to cause a collision
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Likely target velocities

• The relative energy (Er ) of a
scattering event is given by

Er =
1
2

m|vi−vt|2

where m is the neutron mass

• vt vectors that cause Er to be closer
to a resonance are more likely to
cause scattering events

• This effect can significantly impact
MC results [1]
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Case 1: flat cross section near Ei
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Case 2: Resonance with an energy just above Ei 
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Rejection sampling algorithms for free gas elastic scattering
• Doppler Broadening Rejection Correction (DBRC) [2] and Relative

Velocity Sampling (RVS) [3]

• DBRC: Rejection sample a possible vt from a Maxwellian, then
accept/reject based on the likelihood that vt causes a collision

• High sampling efficiency (∼ 97% for DBRC, ∼ 22% for RVS) in
regions in which the cross section is relatively flat [3]

• Low sampling efficiencies (< 1%) near resonances [3]

• These disparate rejection sampling efficiencies degrade the GPU
particle tracking rate

• Shift MC code [1]: DBRC was found to reduce the GPU tracking
rate by 4.9×, compared to only 5.3% on the CPU
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Summary

• A new method for sampling vt without rejection sampling:

1 Step 1: Sample Er using windowed multipole data

2 Step 2: Sample vt based on Er

• Validation

• Preliminary performance results

• Conclusion
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Step 1: Sample Er



Relative energy PDF and CDF
PDF of the Er of the collision [4], in terms of u =

√
E and ξ ∝

√
T :

f (ur ) =

(
e
−(ui−ur )2

ξ2 −e
−(ui+ur )2

ξ2

)
u2

r σ(ur )

The CDF is then:

F (ur ) =

ur∫
0

f (u′r )du′r
∞∫
0

f (ur )dur

=

ur∫
0

(
e
−(ui−u′r )

2

ξ2 −e
−(ui+u′r )

2

ξ2

)
u′2r σ(u′r )du′r

ξ
√

πu2
i σD(ui ,ξ )

Goal: obtain an expression for the 0 K cross section (σ ) that is:

1 closed form

2 allows the CDF equation to be integrated
6



Multipole data representation
Provides an expression for the thermal/epithermal σ in terms of:
• poles (p): singularities in the complex plane

• corresponding residues (r ), proportional to the path integrals around poles
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At T = 0 K, the cross section is given by [5]:

σ(u) =
1
u2 ∑

k
Re
(

2rk

pk −u

)
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Multipole data representation
Provides an expression for the thermal/epithermal σ in terms of:
• poles (p): singularities in the complex plane

• corresponding residues (r ), proportional to the path integrals around poles
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At T = 0 K, the cross section is given by [5]:

σ(u) =
1
u2 ∑

k
Re
(

2rk

pk −u

)
Computationally expensive
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Windowed Multipole Method

Approximate “far away” poles with a polynomial [6]:

σ(u)=
1
u2 ∑

k∈window
Re
(

2rk

pk −u

)
︸ ︷︷ ︸

poles

+
1
u2

N−1

∑
n=0

an (c1(u−c0))
n

︸ ︷︷ ︸
polynomial

This does not provide an integrable PDF
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For free gas elastic scattering, use a Gaussian approximation:

σ(u) =
1
u2 ∑

k
∑
j

hs,k ,je
−(u−uk )

2

w2
s,k ,j︸ ︷︷ ︸

symmetric

+ha,k ,j(u−uk )e
−(u−uk )

2

w2
a,k ,j︸ ︷︷ ︸

antisymmetric

+ 1
u2

N−1

∑
n=0

an (c1(u−c0))
n
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Solved CDF

F (ur ) =
1

ξ
√

πu2
i σD(ui ,ξ )

[
∑
k

∑
j

hs,k ,j Is(ur )+∑
k

∑
j

ha,k ,j Ia(ur )+∑
n

anIp,n(ur )

]

Closed-form expression for Is(ur ), Ia(ur ), and Ip,n(ur ) are found in the paper.

To sample this CDF:

1 Select a random variate ε

2 Solve for ur via root-finding:

F (ur )− ε = 0 (1)

3 Final answer:
Er = u2

r (2)
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Step 2: Sample vt



PDF for z component of vt

st,z

vt

vi

sr

θ

z
x

so
f (st ,z) = e

−Ms2
t ,z

2kBT

︸ ︷︷ ︸soe
−Ms2

o
2kBT

︸ ︷︷ ︸
√

1+

(
si ,z −st ,z

so

)2

︸ ︷︷ ︸
1 Maxwellian PDF of target speed in the z-direction
2 Maxwellian PDF of target speed in the orthogonal direction in cyl. coordinates
3 Ratio of the rate of change in the z-direction relative to the rate of change along the

arc length of the sphere
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CDF for z component of vt

Convert the PDF to a CDF:

F (st ,z) =

st ,z∫
si ,z−sr

f (s′t ,z)ds′t ,z

si ,z+sr∫
si ,z−sr

f (st ,z)dst ,z

=
e
−Msi ,z st ,z

kBT −e
−Msi ,z (si ,z−sr )

kBT

e
−Msi ,z (si ,z+sr )

kBT −e
−Msi ,z (si ,z−sr )

kBT

This CDF is invertible:

st ,z = F−1(ε) =
−kBT
Msi ,z

log

(
εe

−Msi ,z (si ,z+sr )
kBT +(1− ε)e

−Msi ,z (si ,z−sr )
kBT

)
Once st ,z is sampled, cos(θ) = st ,z

st
, and the azimuthal angle is sampled uniformly
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Validation



Prototype implementation

• Implemented in Python:
I “Pole” method for free gas elastic scattering
I Standard DBRC method
• CPU execution only
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Target energy PDF comparison

• E = 6.57 eV, below the 6.67 eV resonance of 238U, T = 1200 K
• Black lines: expected results (DBRC)
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Neutron exit energy PDF comparison
• E = 6.67 eV, coincident with the 6.67 eV resonance of 238U, T = 1200 K
• Black lines: expected results (DBRC)
• Results match those in the literature [7]
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Preliminary timing results



CPU timing results: far from resonance
Ei = 6.3 eV, far from the 6.67 eV 238U resonance, T = 300 K

Problem setup
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CPU timing results: near resonance
Ei = 6.44 eV, on the edge of the 6.67 eV 238U resonance, T = 300 K

Problem setup
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CPU timing results: on resonance

Ei = 6.67 eV, coincident with the 6.67 eV 238U resonance, T = 300

Problem setup
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Summary of results

• Pole: worst case single sample compute time is ∼ 15 ms on the CPU

• DBRC: worst case single sample compute time is ∼ 40 ms on the CPU

• GPU performance may be related to worst case CPU timing results
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Conclusion



Conclusion

• A new free gas elastic scattering method without rejection sampling is
proposed
I Enabled by the Windowed Multipole method
I Involves one root-finding step and one direct sampling step

• Preliminary results indicate this method may outperform existing methods
on the GPU

• Future work:
I Explore further approximations to eliminate the root-finding step
I Implement and test on the GPU
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Questions?
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Solution to Is(ur ) and Ia(ur )

Is(ur ) =
eλ

+
3
√

π

2
√

λ1

(
erf(
√

λ1(λ
+
2 +ur ))− erf(

√
λ1λ

+
2 )
)

+
eλ
−
3
√

π

2
√

λ1

(
erf(
√

λ1(λ
−
2 +ur ))− erf(

√
λ1λ

−
2 )
)

Ia(ur ) =
−eλ

−
3

2λ1

(
e−λ1(ur+λ

−
2 )2−e−λ1(λ

−
2 )2
)
+

eλ
+
3

2λ1

(
e−λ1(ur+λ

+
2 )2−e−λ1(λ

+
2 )2
)

−
eλ
−
3
√

π(λ−2 +uk )

2
√

λ1

(
erf(
√

λ1(λ
−
2 +ur ))− erf(

√
λ1λ

−
2 )
)

+
eλ

+
3
√

π(λ+
2 +uk )

2
√

λ1

(
erf(
√

λ1(λ
+
2 +ur ))− erf(

√
λ1λ

+
2 )
)

22



λ values for Is(ur ) and Ia(ur )

λ1 =

(
1

ξ 2 +
1

w2
k

)

λ2 =
1
λ1

(
δui

ξ 2 −
uk

w2
k

)

λ3 =−
u2

k

w2
k
−

u2
i

ξ 2 +
1
λ1

(
δui

ξ 2 −
uk

w2
k

)2

where δ =±1, and λ+ and λ− indicate the value of δ
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Solution to Ip,n(ur )

Ip,n(ur ) = Jn(ur ,−1)−Jn(ur ,1),

where Jn values are given by:

Jn(ur ,δ ) =
c2

1ξ 2(n−1)
2

Jn−2(ur ,δ )−c1(c0 +δui)Jn−1(ur ,δ )

−
c2

1ξ 2

2c1

(
(c1(ur −c0))

n−1e
−(ur +δui ))

2

ξ2 − (−c0c1)
n−1e

−(δui )
2

ξ2
)
,

J0(ur ,δ ) =

√
πξ

2

[
erf

(
δui +ur

ξ

)
− erf

(
δui

ξ

)]
,

J1(ur ,δ ) =
−c1ξ 2

2

(
e
−(ur +δui )

2

ξ2 −e
−(δui )

2

ξ2

)
−c1(c0 +δui)J0(ur ,δ ).
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