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Abstract

The operation of fusion energy systems (FES) results in neutron activation of system compo-

nents. Radionuclides produced in this process persist after the device is shutdown and emit

photons as they decay. It is necessary to quantify the potential dose rate from these photons

as a function of position and time after shutdown for maintenance planning and licensing

purposes. This shutdown dose rate (SDR) is calculated by coupling neutron transport, acti-

vation analysis, and photon transport. The size, complexity, and attenuating configuration

of FES motivates the use of hybrid Monte Carlo (MC)/deterministic neutron transport.

The Multi-Step Consistent Adjoint Driven Importance Sampling (MS-CADIS) method is a

method for optimizing MC neutron transport for coupled multiphysics problems, including

SDR analysis, using deterministic estimates of adjoint flux distributions. MS-CADIS requires

the formulation of an adjoint neutron source that approximates the transmutation process.

In this work, transmutation approximations and assumptions are described that allow for

the derivation of an approximate solution for the MS-CADIS adjoint neutron source for SDR

analysis. These assumptions are collectively referred to as the Single Neutron Interaction

and Low Burnup (SNILB) criteria, and result in the SNILB solution for the adjoint neutron

source. A heuristic method is proposed for determining the extent to which the SNILB criteria

are met. It is shown that the SNILB criteria are reasonably met for typical FES neutron

spectra and materials over a range of irradiation scenarios. The Groupwise Transmutation

(GT)-CADIS method is proposed: an implementation of the MS-CADIS method for SDR

analysis that uses single-energy-group irradiations to generate an adjoint neutron source

that is equivalent to the SNILB solution when the SNILB criteria are met. The GT-CADIS

method is demonstrated with a simple SDR problem. Speedups of 200 ± 100 are obtained

relative to the Forward Weighted (FW)-CADIS global variance reduction technique and 9 ±

5 ·104 relative to analog.

For special cases when the SNILB criteria are not met, a suite of methods referred to as
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SNILB-violation methods are proposed for resolving the MS-CADIS adjoint neutron source

for SDR analysis. An SDR problem was constructed where the SNILB criteria are egregiously

violated and a subset of SNILB-violation methods are shown to provide improvements over

the GT-CADIS method in this case. Finally, the GT-CADIS method is applied to a problem

involving a Princeton Plasma Physics Laboratory (PPPL) Spherical Tokamak (ST) Fusion

Nuclear Science Facility (FNSF) device. This work shows that the MS-CADIS method

for SDR analysis and specifically the GT-CADIS implementation are broadly applicable to

FES problems, provide a significant speedup that will drastically reduce the computational

resources necessary for SDR analysis, and are ready for production-level use.
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Chapter 1

Introduction

Fusion energy systems (FES) describe a class of experimental and conceptual devices that use

the fusion of atomic nuclei to generate heat with the ultimate goal of producing electricity

for commercial consumption. The fusion of two nuclei requires overcoming the tremendous

electrostatic force that exists between them. With thermonuclear fusion this force is overcome

by heating fuel in the plasma state to temperatures that exceed 108 K. Leading concepts

for thermonuclear fusion systems include tokamaks and stellerators, which use magnetic

fields to confine these plasmas within toroidal vacuum vessels. The design and operation of

experimental devices — such as the Joint European Torus (JET) [1], Wendelstein 7-X [2],

and ITER [3] — requires surmounting a variety of engineering challenges.

One such challenge is the production of radionuclides within the components of these

reactors. Though the future may hold several viable options for fusion fuel, the fusion

of deuterium and tritium (D-T) is the easiest to achieve. Each D-T reaction produces a

high-energy neutron (14.1 MeV). These neutrons penetrate deep into system components.

Nuclear reactions between neutrons and system components produce radionuclides which

persist after neutron-producing operations cease. These radionuclides emit high-energy (0.01

– 10 MeV) photons as they decay. Maintenance operations may require personnel to be in the

vicinity of these activated components. It is therefore necessary to quantify the potential dose

rate from photons emitted from these radionuclides as a function of position and time after

shutdown. Precise quantification of this shutdown dose rate (SDR) is necessary to ensure

occupational safety, minimize the downtime of the device from cooldown before maintenance,

and carry out licensing activities.

The quantification of the SDR is made possible by high-fidelity computational simulations.

The foremost method for obtaining these estimates is the Rigorous 2-Step (R2S) method [4].
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With this method a neutron transport simulation is first performed in order to acquire a

multigroup neutron flux distribution throughout the reactor geometry within discrete spatial

regions (either geometry cells or a mesh). A dedicated nuclear inventory analysis code is then

used to simulate the irradiation of the material within each spatial region when subjected to

the neutron flux for some irradiation and decay scenario of interest. This yields an energywise

photon emission density within each spatial region, which is then used to define a source for

a photon transport simulation. Flux-to-dose-rate conversion factors can be used to convert

the resulting photon flux distributions to SDR distributions.

Monte Carlo radiation transport is typically used for both R2S transport steps [5, 6, 4, 7,

8, 9] due to the degree of accuracy required for SDR estimation. MC transport is a stochastic

method that involves simulating random walks of particles through space/energy phase

space. This allows for continuous (i.e., not discrete) treatment of particle position, direction,

and energy. However, MC results must be obtained within discrete phase space regions,

known as tallies, and these results have associated statistical uncertainties. Simulation of

transport through the highly-attenuating geometries encountered in FES requires the use of

MC variance reduction (VR) techniques in order to obtain results with satisfactory statistical

uncertainty in reasonable computer processor time. VR techniques modify particle behavior

in order to preferentially sample behavior that results in MC tally scores, accelerating the

convergence of results.

Deterministic radiation transport methods involve spatial, angular, and energy discretiza-

tion, yielding particle flux distribution equations that can be solved numerically. In contrast

to MC methods, deterministic methods are ideally suited for resolving particle flux distribu-

tions that span many orders of magnitude, as encountered within FES problems. However,

the discretization process introduces significant systematic error into results. Reducing this

systematic error requires increasing the resolution of the discretization (i.e., a finer mesh, more

angular groups, more energy groups), which increases computer memory requirements. FES

are large, geometrically complex, and contain regions were particle streaming is important.
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As a result, computer memory limitations do not permit full-scale analysis of FES to be done

with the resolution necessary to obtain results with sufficiently low systematic error.

Though full-scale FES analysis with deterministic transport is not feasible, deterministic

methods can be used to quickly (i.e., with less computer processor time than MC transport)

obtain approximate particle flux distributions which can be used for MC VR. The Consistent

Adjoint Driven Importance Sampling (CADIS) method [10] is one such hybrid MC/determin-

istic method that allows for high-resolution results to be obtained using MC transport with a

speedup from a deterministic transport preprocessing step. With this method, MC transport

is optimized with respect to a detector response function. This detector is used as an adjoint

source for deterministic adjoint transport. The resulting adjoint flux distribution — which

provides an estimate of the importance of phase space regions to the detector response—is

used to define MC weight windows and biased source distributions that optimize MC transport

with respect to the detector. The Forward-Weighted (FW)-CADIS method [11] uses an

additional deterministic estimate of the forward flux to generate an adjoint source to be

used with the CADIS method to optimize MC transport with respect to multiple detectors

simultaneously. The FW-CADIS method can also be used to optimize MC transport with

respect to all of space (or phase space) for the purpose of global VR. These methods have

been shown to drastically improve the efficiency of MC simulations for large-scale fusion

applications [12] which motivates the application of these methods to SDR analysis problems.

For R2S photon transport the standard CADIS or FW-CADIS method can be applied in

order to optimize photon transport for local or global SDR calculations [5]. For R2S neutron

transport, global VR techniques have previously been used to evenly distribute MC neutrons

throughout all of space or phase space [5, 13]. FW-CADIS could be used in order to optimize

radiation transport using this approach. However, this global approach is computationally

wasteful because not all regions of neutron phase space are of equal importance to the

photon SDR. Instead, neutrons should be preferentially directed to regions of phase space

where material becomes activated and produces photons at decay times of interest that are
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important to photon dose rate detector(s). The Multi-Step (MS)-CADIS method [14, 15]

defines an adjoint neutron source (i.e., a detector response function) that, when used with the

CADIS method, achieves this optimal neutron biasing. However, a solution for this adjoint

neutron source requires a quantity, defined as T , that relates neutron flux to decay photon

emission density. An expression for T is not attainable for arbitrary transmutation networks

and irradiation scenarios, so transmutation approximations must be made.

The principle goal of this work is to develop approximate solutions for T for the MS-CADIS

adjoint neutron source and characterize the applicability and performance of these techniques.

Chapter 2 first provides background on radiation transport, nuclear inventory analysis, SDR

analysis, and the MS-CADIS method. Chapter 3 discusses the Single Neutron Interaction

and Low Burnup (SNILB) solution for T . This approximate solution is valid when a set of

criteria referred to as the SNILB criteria are met. Chapter 4 first describes the Groupwise

Transmutation (GT)-CADIS method, an implementation of the MS-CADIS method for SDR

analysis that involves calculating T via a series of irradiations with neutrons in a single energy

group, performed as a preprocessing step. This procedure produces T that are equivalent to

the SNILB solution when the SNILB criteria are met. A suite of methods are also proposed

in cases where the SNILB criteria are not met, referred to as SNILB-violation methods.

These methods involves calculating T by carrying out irradiations with multiple neutron

energy groups simultaneously and/or with a priori knowledge of the neutron spectra within

a problem.

Chapter 5 describes the software used to conduct the numerical experiments in this work.

Chapters 6–9 describe these numerical experiments. In Chapter 6 the SNILB criteria are

evaluated for typical FES materials and neutron spectra over a range of irradiation and decay

scenarios. In Chapter 7 the efficacy of the GT-CADIS method is demonstrated relative to

FW-CADIS and analog transport for a simple problem where the SNILB criteria are met.

In Chapter 8, a problem is constructed where the SNILB criteria are egregiously violated

and SNILB-violation methods are shown to provide improved performance compared to
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GT-CADIS. Finally, in Chapter 9 the GT-CADIS method is applied to a production-level

problem involving a Princeton Plasma Physics Laboratory (PPPL) Spherical Tokamak (ST)

Fusion Nuclear Science Facility (FNSF) device [16] in order to show that the method is ready

for production-level use.
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Chapter 2

Background

This work focuses on the application of hybrid Monte Carlo (MC)/deterministic radiation

transport techniques to SDR analysis. This chapter provides the theoretical and practical

background for these two topics. Radiation transport for fusion shielding applications

is first discussed including deterministic and MC solution methods, MC VR, and hybrid

MC/deterministic methods. Nuclear inventory analysis is then discussed, followed by SDR

analysis methods that couple nuclear inventory analysis with radiation transport. Finally,

the MS-CADIS method is introduced.

2.1 Radiation Transport for Fusion Shielding

Applications

The design and operation of FES requires detailed knowledge of particle flux distributions

throughout the device. In the case of SDR analysis, neutron flux distributions are necessary to

quantify the nuclear activation of system components. Photon flux distributions are required

to assess the dose rate resulting from these activated components within regions of interest.

This section describes the theory and methods for ascertaining these distributions.

2.1.1 The Linear Boltzmann Equation

The steady state distribution of neutrons and photons within FES can be described by a

form of the linear Boltzmann Equation [17] as given by
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(
Ω̂ · ~∇+ Σ(r̂,E)

)
ψ(r̂, Ω̂,E) = (2.1)

q(~r, Ω̂,E) +
∫
E ′

dE ′
∫

4π

dΩ ′Σs(r̂,E ′ → E, Ω̂ ′ · Ω̂)ψ(r̂, Ω̂,E).

In Equation 2.1, ψ(~r, Ω̂,E, t) represents the particle flux as a function of a three-dimensional

position vector (~r), a two-dimensional direction vector (Ω̂), and energy (E). The total

macroscopic cross section is denoted by Σ(r̂,E). The q(~r, Ω̂,E) is a fixed external source

(e.g., neutrons from a burning/ignited plasma, decay photons from activation products). The

Σs(r̂,E ′ → E, Ω̂ ′ · Ω̂) is the double-differential scattering cross section: the cross section

of a particle of energy E ′ and direction Ω̂ ′ scattering into energy E at some angle θ where

cos(θ) = Ω̂ ′ · Ω̂. It is often convenient to write the transport equation in terms of the

transport operator H as seen in Equation 2.2. The H captures the behavior of all particle

interactions in a single term:

H = Ω̂ · ~∇+ Σ(r̂,E) −
∫
E ′

dE ′
∫

4π

dΩ ′Σs(r̂,E ′ → E, Ω̂ ′ · Ω̂). (2.2)

The transport equation can then be written in operator notation as:

Hψ(r̂, Ω̂,E) = q(~r, Ω̂,E). (2.3)

2.1.2 The Adjoint Transport Equation

The adjoint flux (ψ+), is a quantity of interest to FES analysis because under certain

circumstances (explained below) ψ+ defines the importance of regions of phase space to

the response of a detector. This is useful for MC VR methods that aim to optimize the

convergence of the solution of the transport equation relative to a detector response function.

Mathematically, ψ+ is defined as the quantity that satisfies the following adjoint identity:
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〈ψ+Hψ〉 = 〈ψH+ψ+〉, (2.4)

where H+ is the adjoint of the transport operator and 〈·〉 denotes integration over all phase

space. The H+ and ψ+ can be related by the adjoint transport equation:

H+ψ+ = q+, (2.5)

where q+ is the adjoint source. Just as the forward (i.e., not adjoint) flux is dependent on

the forward external source q, the adjoint flux is dependent on q+. In the case when q+ is

chosen to be equivalent to a forward detector response function σd, the resulting adjoint flux

denotes the importance of a region of phase space to σd [18].

For a given detector response function, the response (R) is:

R = 〈ψσd〉. (2.6)

The adjoint identity given in Equation 2.4 can be simplified using Equations 2.3 and 2.5

yielding:

〈q+ψ〉 = 〈qψ+〉, (2.7)

which allows for an alternative formulation of the response:

R = 〈ψ+q〉. (2.8)

This means that the response can be known for any source once the adjoint flux for a given

detector is resolved. The adjoint flux for a given detector and the forward flux can be

combined to give the contributon flux (ψc) as shown in Equation 2.9 [19].

ψc = ψ ·ψ+ (2.9)
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The contributon flux can be thought of as a forward flux where only particles that ultimately

contribute to a detector are counted. Contributon flux distributions are useful for determining

the pathways particles take to reach a given detector.

2.1.3 Deterministic Radiation Transport

Though analytic solutions to the forward and adjoint transport equations are possible for

simple configurations, the complexity of nuclear systems has necessitated the development

of numerical techniques for most practical applications. Deterministic radiation transport

methods involve discretizing space, energy, and direction in order to obtain an approximate

solution to Equation 2.3. The term “deterministic” is used in contrast to the stochastic MC

method discussed in Section 2.1.4. A multitude of deterministic methods exist and are used

in different applications [17]. One of the most prominent methods is the discrete ordinates

(SN) method, which solves the transport equation along discrete angles.

The SN method relies on the multigroup approximation, which divides energy into G

groups. For each energy group (g), the group fluxes are given by

ψg(r̂, Ω̂) =

∫Eg
Eg+1

ψ(r̂, Ω̂,E) dE. (2.10)

The group quantities for total absorption cross section, scattering cross section from g ′ → g,

and source density, denoted by Σg(r̂), Σs,gg ′(r, Ω̂ · Ω̂ ′), and qg(r̂, Ω̂), respectively are

similarly obtained by integrating continuous quantities over the energy group. This yields

the multigroup representation of the transport equation [20]:

[Ω̂ · ∇̂+ Σg(r̂)]ψg(r̂, Ω̂) =
∑
g ′

∫
4π

Σs,gg ′(r̂, Ω̂ · Ω̂ ′)ψg ′(r̂, Ω̂ ′)d Ω̂ ′ + qg(r̂, Ω̂). (2.11)

The Σs,gg ′(r̂, Ω̂·Ω̂ ′) is a nontrivial function of Ω̂ which can be approximated using a truncated
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Legendre expansion. This provides a starting point for the SN method, which proceeds by

solving along N discrete angles, which form a quadrature set. A spatial differencing scheme

is used to relate flux in neighboring discrete spatial regions. The SN method then obtains a

flux distribution using an iterative method. In each iteration, fluxes are obtained for each

phase space region using an estimate of the scattering source. The flux distribution is then

used to improve the estimate of the scattering source for the next iteration. This process

is repeated until some convergence criteria are met. The notation “PLSN” is often used to

describe the parameters used for SN methods, where L represents the number of terms in the

truncated Legendre polynomial expansion.

SN methods (and deterministic methods in general) can be used to quickly obtain global

flux distributions and other quantities with the sacrifice in accuracy from the aforementioned

discretizations. The resolution of SN methods is often bound by computer memory, as the

solution method requires the storage of cross sections and angular multigroup fluxes for each

ordinate within each mesh volume element. SN methods are poorly suited for transport

problems where streaming plays a large role. The limited number of discrete angles can yield

artifacts known as “ray effects”: artificially high flux along quadrature ordinates, especially

in (near-)void regions. In addition, particle streaming down ducts may be poorly represented

if the duct does not happen to be aligned with an angle in the quadrature set. These effects

limit the use of SN methods for shielding calculations for FES, which involve particles born

in near-vacuum and extensive streaming through narrow channels.

This work utilizes the PARallel TIme-dependent SN (PARTISN) [21] 3D Cartesian SN

code developed at Los Alamos National Laboratory (LANL). PARTISN can solve both

forward and adjoint transport problems and is parallelized via Message Passing Interface

(MPI). Computational tools have been created to handle PARTISN input and output as

discussed in Section 5.2.
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2.1.4 Monte Carlo Radiation Transport

MC radiation transport is a stochastic method that involves simulating particles using a

random walk method. Particle birth and interactions are described using probability density

functions (PDFs). Pseudo-random numbers are generated to sample these PDFs to move the

particle through phase space until it is absorbed or otherwise terminated. Quantities such as

flux and current can be ascertained using tallies, which record the behavior of particles as

they travel through a region of phase space. Each such event (a tally score) constitutes a

random sample of the underlying (unknown) response PDF, and a sufficiently large collection

of these events can be averaged together to obtain a converged result.

MC radiation transport is generally more accurate than deterministic methods because it

does not require discretization in space, energy, or direction. Though lack of phase space

discretization reduces systematic errors from modeling that are intrinsic to deterministic

calculations, results from MC simulations have an associated statistical error. The statistical

error is typically quantified using the relative error R. The relative error is given by

R =
1
x̄

Sx√
Nscores

, (2.12)

where x̄ is the mean of the tally scores, Sx is the standard deviation of the tally scores, and

Nscores is the number of tally scores. In MC, the R is used not only to quantify stochastic

uncertainty, but also as a convergence test. Relative errors must be less than 0.1 to be

considered “generally reliable” [22]. The efficiency of an MC simulation is measured by how

quickly a simulation can achieve a sufficiently low R. The MC Figure of Merit (FOM) of a

tally is defined by:

FOM =
1

R2tproc
, (2.13)

where tproc is the processor time necessary to achieve a relative error R. The FOM is highly

problem-dependent, and is also processor-dependent.
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The high degree of accuracy required for the analysis of FES necessitates the use of MC

radiation transport. This accuracy comes at the price of long convergence times compared to

deterministic methods. This is mitigated through the use of MC VR (as discussed in the

following section) as well as parallelization. MC methods are “embarrassingly parallelizable”

— particles can be simulated independently from one another on many processors in parallel

with minimal interprocess communication or overhead. Results from particles simulated on

many processors simultaneously can then be combined using appropriate statistical methods.

This work utilizes the MCNP5 transport code, developed at Los Alamos National Lab-

oratory [22]. MCNP5 is a continuous-energy MC code for neutron, photon, and electron

transport. In MCNP5, a text-based Constructive Solid Geometry (CSG) language is used

to define geometry cells and surfaces. However, due to the tremendous complexity of FES,

geometries are typically created using Computer Aided Design (CAD) software. In many

cases, CAD models already exist for device assembly purposes so it is desirable to use these

same models for neutronics analysis as well.

Radiation transport can be performed directly on CAD geometry using DAG-MCNP5,

a modified version of MCNP5 that uses the Direct Accelerated Geometry Monte Carlo

(DAGMC) toolkit [23] (a component of the Mesh Oriented dataABase (MOAB) library [24])

for particle tracking. CUBIT CAD software [25] can be used to create CAD geometry for use

with DAG-MCNP5. DAG-MCNP5 has been used for 3D analysis of FES including ITER,

ARIES, and FNSF [26].

2.2 Monte Carlo Variance Reduction

The deep-penetration shielding problems encountered in FES are problematic for analog

MC transport (i.e., MC transport without VR). In analog MC simulations, particle birth

positions, energies, directions, and all subsequent interactions are simulated by sampling the

unbiased PDFs that represent these phenomena. This means that regions of phase space
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with high particle flux are sampled more frequently then regions of low particle flux. This

results in prohibitively-low convergence rates for tallies in regions where the flux is highly

attenuated, commonly found in FES scenarios.

MC VR refers to a class of methods that improve the efficiency of MC calculations by

modifying particle behavior (e.g., by biasing PDFs that govern particle behavior) in order

to preferentially sample events that result in tally scores. The statistical weight of particles

must then be adjusted in order to play a “fair game” — that is, to ensure that a systematic

bias is not being introduced into the result. The following relationship between biased and

unbiased PDFs (denoted by p) and statistical weight (w) guarantees a fair game:

wbiased pbiased = wunbiased punbiased . (2.14)

The sampling of the biased PDFs can increase the FOM by either increasing the rate of

tally scores (thereby increasing Nscores in Equation 2.12) or decreasing the standard deviation

in tally scores Sx, which is a function of statistical weight. Most MC VR methods affect both

quantities.

Techniques to choose pbiased can be thought of in terms of two classes of MC problems.

In target-based problems, low-variance results are desired for one or more tallies, which

typically occupy a small region of phase space (contiguous or disparate) relative to the

phase space of the problem. For example, the nuclear heating in a single component or

the prompt dose rate to an operator may need to be estimated. In global MC simulations,

low-variance results are desired uniformly throughout space or phase space. This may be

useful for estimating dose rates throughout an entire facility. Global problems can be thought

of as a special case of target-based problems, where the target is a response function chosen

to yield uniform sampling of space or phase space. Nonetheless, the distinction between

global and target-based problems is useful in the discussion of different MC VR techniques.
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2.2.1 Source Biasing and Particle Splitting

Industry-standard MC codes typically contain a suite of VR methods [10]. Historically, using

these methods has required an experienced analyst. Automated VR refers to methods that can

increase the FOM of a tally with minimal judgment from the analyst. Two such VR methods

often used as components of these schemes are source biasing and splitting/rouletting.

All MC sources are defined by PDFs. Source biasing is the process in which a biased

source PDF is sampled instead of the source PDF, and statistical weight of particles born is

adjusted using Equation 2.14. This method is particularly useful when phase space regions

with the highest source intensity are not major contributors to the tally or tallies of interest.

Particle splitting is a population control method where a single particle is split into

multiple particles — each of reduced statistical weight — upon entering a region of phase

space. When a single particle is split into N particles each of weight wbiased , the follow

relation must be satisfied:

N×wbiased pbiased = wunbiased punbiased . (2.15)

If used correctly, particles split when moving from one region of phase space to a more

important one. Splitting is used in combination with Russian roulette: when a particle

moves in the opposite direction, from an important region to a less important one, it is

terminated with a probability that is reciprocal to N. In MCNP5 the “weight window game”

is a splitting/rouletting implementation. A weight window is a range of weights with an

upper and lower bound, that can be assigned spatially to geometry cells or a superimposed

mesh, and to energy bins. When a particle enters such a phase space region, its weight

is unmodified if it is within the window. If it is above or below the window it is split or

rouletted appropriately. Automatic VR parameter generation schemes can be used to generate

weight window lower bounds (often referred to as simply “weight windows” for short) and/or

source biasing parameters, typically using some problem-specific information obtained via a
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preprocessing step. Two of these methods are discussed in Section 2.2.2.

2.2.2 CADIS and FW-CADIS

CADIS and FW-CADIS are hybrid MC/deterministic methods that generate MC weight

windows and biased sources using a deterministic estimate of the adjoint flux in order to

maximize the FOM of a tally. The tally of interest defines the adjoint source and adjoint

transport is carried out. The response can be formulated as a function of the resulting

estimate of the adjoint flux:

R =

∫
4π

∫
E

∫
V

ψ+(~r,E, Ω̂)q(~r,E, Ω̂)d~r dEdΩ̂. (2.16)

Weight window lower bounds are then given by:

wl(~r,E) =
R(1+β

2

)
ψ+(~r,E)

, (2.17)

where β is the ratio of weight window upper bound to lower bound (default of 5 for MCNP5).

The corresponding biased source distribution is

q̂(~r,E) = ψ+(~r,E)q(~r,E)
R

. (2.18)

This biased source is defined “consistently,” such that particles are born within the weight

window for the birth location and energy. The CADIS method is useful when optimizing

the results of a single detector response function. In many cases, it may be necessary to

simultaneously optimize several detector response functions. The FW-CADIS method defines

an adjoint source that, when used with the CADIS method, will optimize multiple detector

response functions. This adjoint source is given as:

q+(~r,E) =
∑
i

σd,i(~r,E)
Ri

, (2.19)
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where σd,i is the detector response function for the ith detector and each response Ri is

calculated from a deterministic estimate of the forward flux. The FW-CADIS method can be

used for global VR by defining a mesh tally covering the entire geometry as a detector. If

uniform relative error is also desired across all energy groups, the response is set equal to the

energy-wise flux, and σd,i is 1 for all i. In this case, the adjoint source is simply

q+(~r,E) = 1
φ(~r,E) . (2.20)

2.3 Nuclear Inventory Analysis

When a material is irradiated with neutrons, a complex network of reaction pathways is

populated, producing radionuclides. These pathways may involve reactions with neutrons

directly, which occur only during operation when neutrons are being produced, or decay

processes that occur both during the operation of the device and after shutdown. For SDR

analysis, the nuclear inventory must be known precisely in order to quantify the photon

emission density as a function of time after shutdown. The production and destruction of

nuclides can be modeled mathematically, allowing for the nuclear inventory to be discerned

for arbitrary irradiation and decay scenarios [27].

2.3.1 Mathematical Model

The rate in which a nuclide i undergoes reactions or decay to some other nuclide j is

proportional to its concentration. For nuclear reactions, the production rate constant (P) is

Pi→j, reaction =

∫
En

σi→j(En)φn(En)dEn, (2.21)

where φn(En) is the neutron flux for neutron energy En and σi→j(En) is the microscopic

cross section for the reaction that transforms nuclide i into j. For decay processes, the
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proportionality constant is

Pi→j, decay = λibi→j, (2.22)

where λi is the decay constant for i and bi→j is the branching ratio for the pathway that

produces j. It is convenient to represent both of these i→ j rates within the single term:

Pi→j, total = Pi→j, reaction + Pi→j, decay. (2.23)

The rate of change in the concentration of any nuclide (Ni) with respect to time is the

difference in the rate of production and destruction of that nuclide:

dNi(t)
d t =

∑
j

Nj(t)Pj→i, total −
∑
j

Ni(t)Pi→j, total. (2.24)

For an entire network of nuclides and pathways, this can be expressed as a system of first-order

linear differential equations, given by:

d ~N(t)

d t = A~N(t), (2.25)

where ~N(t) is a vector of all nuclide concentrations as a function of time and A is the

transfer matrix of production/destruction rates. The solution to this equation is the matrix

exponential:

~N(t) = eAt~N0. (2.26)

Analysis of the nuclear inventory of FES requires the modeling of complex irradiation

scenarios which involve sequential periods of device on-time and off-time which have unique

A matrices. For an arbitrary irradiation scenario ~N(t) can be obtained by solving Equation

2.26 for each period within the scenario, with ~N0 being the inventory from the end of the

previous period.
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Since A is large (perhaps as large as 2000 × 2000 [27]) and sparsely filled, simplifying

assumptions are often made to solve Equation 2.26. For example, a truncated series expansion

can be used to approximate the matrix exponential. Transmutation chains that contain loops

or cross-links can be straightened to form smaller or simpler systems. The straightening

of transmutation chains also allows for the application of the analytic solution of nuclide

concentrations within linear chains (as discussed in the next section). Other methods involve

approximating the derivative (the RHS of Equation 2.25) by iteratively solving for many

small time steps. Each method has trade-offs in accuracy, processor time, and computer

memory.

This work uses the Analytic and Laplacian Adaptive Radioactivity Analysis (ALARA)

activation code developed at the University of Wisconsin - Madison [28]. ALARA adaptively

chooses a solution method based on the characteristics of the problem and allows for activation

problems to be performed in a large number of material/flux regions within a single code

execution. The computational efficiency of ALARA facilitates mesh-based activation analysis,

characterized by 105 – 107 activation problems.

2.3.2 Linear Transmutation Chains

One method of solving Equation 2.26 is to decompose the transmutation network into a

collection of linear chains in the form:

N1 → · · · → Ni → · · · → NI. (2.27)

This can be done for arbitrary transmutation networks, as will be shown in Section 3.1.

Modeling transmutation networks as a collection of linear chains greatly simplifies Equation

2.26. For these chains the A matrix is bidiagonal which allows for a solution to Equation

2.26 in the form of the Bateman equation [29]:
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Ni(t) = Ni(0)e−dit +
i−1∑
j=1

Nj(0)
[
i−1∑
k=j

[Pk+1(e
−dkt − e−dit)

di − dk

i−1∏
l=j,
l6=k

Pl+1

dl − dk

]]
, (2.28)

where Pk is the production rate of nuclide k (i.e., Pk−1→k), dk is the destruction rate of k

(i.e., Pk→k+1 + λk), and Ni(0) and Nj(0) are the initial concentrations of nuclides i and j,

respectively.

2.4 Shutdown Dose Rate Analysis

In FES, neutrons activate system components and the dose rate from photons emitted from

these components must be estimated as a function of position and time after shutdown. This

dose rate may be one of several radiological quantities of interest. For this work, the SDR will

be quantified using a set of ICRP-74 [30] flux-to-dose rate conversion factors recommended

by the ITER organization [31]. This particular set provides the effective dose rate (“the

sum of the weighted equivalent dose [rates] in all the tissues and organs of the body” [30]),

resulting from antero-posterior (AP) irradiation. In this section two methods that couple

particle transport and nuclear inventory analysis in order to estimate the SDR are discussed:

the Direct 1-Step (D1S) method [32, 33] and the Rigorous 2-Step (R2S) method [4].

2.4.1 Direct 1-Step Method

Industry standard MC codes such as MCNP5 allow for simultaneous transport of neutrons

and prompt photons resulting from (n, γ) reactions. The prompt photon emission density

qp(Ep) that results from neutron flux φn(En) is given by:

qp(Ep) =

∫
En

σ(n,γ)(En,Ep)φn(En)dEn, (2.29)
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where (σ(n,γ)) is the prompt photon production cross section.

Conceptually, with the D1S method σ(n,γ) is replaced with a function that converts neutron

flux to decay photon emission density. Then a single transport simulation is performed for

both neutrons and photons. Photon fluxes can be tallied in the region of interest and

flux-to-dose-rate conversion factors can be used to obtain the SDR. D1S allows for photon

source density to be continuous in space without any cell- or mesh-based discretization. D1S

is not well-suited to applications where the geometry changes between activation and decay.

The principle challenge with the D1S method is producing modified cross sections. To

date, the methods proposed (in published work) have only considered single-step reactions for

a small subset of nuclides within a problem [33]. No method has been proposed for generating

modified cross sections for arbitrary transmutation networks with multistep reactions which

may include loops and branches. These cross sections can be related to the MS-CADIS

method, as further discussed in Section 2.5.

2.4.2 Rigorous 2-Step Method

The R2S method involves two separate transport steps. Neutron transport is first performed

and the neutron flux is tallied using some spatial discretization, either geometry cells or

a superimposed mesh [7], as well as energy discretization (i.e., energy bins). Using these

neutron fluxes and the irradiation scenario of interest, an activation calculation is carried out

in each region using a dedicated nuclear inventory analysis code to give the photon source

density in the region as a function of the decay time. This is then used as a source for

photon transport, where the SDR is tallied using a detector modified with flux-to-dose-rate

conversion factors. The R2S method will be used exclusively in this work.
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2.5 MS-CADIS

SDR analysis often involves estimating the dose rate through thick shielding, in places where

personnel are likely to spend significant time, which necessitates the use of MC VR. With

the R2S method, MC VR is typically required for both neutron and photon transport. For

photon transport either target-based or global VR techniques can be used depending on

where SDR estimates are needed. The CADIS and FW-CADIS methods can be used in these

two cases respectively to produce optimal weight windows and biased sources.

For R2S neutron transport analysts have previously used target-based VR techniques such

as the MCNP weight window generator [4, 9], and manually generated cell-based importances

[8] for MC neutron transport. These methods requires analysts to guess what regions of

neutron phase space are important to the photon SDR and are unlikely to result in optimal

importance sampling VR parameters. The Method of Automatic Generation of Importances

by Calculation (MAGIC) [34] global VR technique has also been used for R2S neutron

transport [5, 13]. Global VR techniques are computationally wasteful for SDR calculations,

because not all phase space regions become activated and produce important decay photons.

The CADIS method can be used to optimize neutron transport for SDR calculations if

an adjoint neutron source can be formulated that captures both the potential of regions of

phase space to become activated and the importance of the resulting decay photons to the

SDR detector. The MS-CADIS method, when applied to SDR analysis, provides an adjoint

neutron source with these properties. The derivation of this adjoint neutron source is given

below, adapted from Ibrahim et al. [14].

When applied to SDR analysis1, the MS-CADIS method constrains the adjoint neutron

source such that the neutron response is equivalent to the photon SDR for a fixed irradiation

scenario. The formulation of the response in Equation 2.8 becomes (time notation suppressed):

1From this point forward, all references to MS-CADIS imply the application of the MS-CADIS method
to SDR analysis, specifically.
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SDR = 〈φn(~r, En) , q+
n(~r, En) 〉. (2.30)

The photon SDR can also be expressed in terms of the adjoint photon flux:

SDR = 〈φ+
p (~r, Ep) , qp(~r, Ep) 〉. (2.31)

From Equations 2.30 and 2.31 it follows that:

〈φn(~r, En) , q+
n(~r, En) 〉 = 〈φ+

p (~r, Ep) , qp(~r, Ep) 〉. (2.32)

In order to solve Equation 2.32 for q+
n(~r, En) , the following relationship can be used, relating

φn(~r, En) to qp(~r, Ep) :

qp(~r, Ep) =

∫
En

T(~r, En, Ep) φn(~r, En) dEn . (2.33)

The quantity T(~r, En, Ep) is defined by this relationship. Substituting Equation 2.33 into

Equation 2.32 yields:

∫
~r

∫
En

φn(~r, En) q+
n(~r, En) dEn d~r =

∫
~r

∫
Ep

 ∫
En

T(~r, En, Ep) φn(~r, En) dEn

 φ+
p (~r, Ep) dEp d~r . (2.34)

Switching the order of integration yields:

∫
~r

∫
En

φn(~r, En) q+
n(~r, En) dEn d~r =
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∫
~r

∫
En

 ∫
Ep

T(~r, En, Ep) φ+
p (~r, Ep) dEp

 φn(~r, En) dEn d~r . (2.35)

From this, the solution for the MS-CADIS adjoint neutron source is obtained:

q+
n(~r, En) =

∫
Ep

T(~r, En, Ep) φ+
p (~r, Ep) dEp . (2.36)

The φ+
p (~r, Ep) can be estimated deterministically given a final photon dose rate detector

to use for q+
p (~r, Ep) . If a T(~r, En, Ep) can be found that satisfies Equation 2.33, then the

q+
n(~r, En) in Equation 2.36 can be used with the CADIS method to optimize neutron transport

for SDR problems. A nascent implementation of the MS-CADIS method has previously been

used to obtain modest speedups over the FW-CADIS method [14].

In the cases where the SDR is desired globally, an adjoint photon source that results in

global VR can be used with the MS-CADIS method. This adjoint photon source can be

obtained using a method similar to the FW-CADIS method. A forward neutron transport

calculation must first be done. The resulting forward neutron fluxes are then used to obtain

a forward photon source using activation calculations or more simply Equation 2.33. Using

this forward photon source, forward photon transport is then done to obtain forward photon

fluxes. Forward photon fluxes are then used to generate an adjoint photon source as is done

with the FW-CADIS method. This adjoint photon source is used as a starting point for the

MS-CADIS method.

The MS-CADIS adjoint neutron source has also been shown to be applicable to the

process of propagating statistical error through an R2S calculation [14]. In addition, the

MS-CADIS method can be related to the D1S method described in Section 2.4.1. Equation

2.33 is in the form of Equation 2.29, which means that if a suitable T(~r, En, Ep) can be

found for use with the MS-CADIS method, this same function could potentially be used to

replace prompt photon production cross sections for the D1S method. As will be discussed in

Chapter 3, a solution for T(~r, En, Ep) cannot be obtained for general transmutation networks,
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necessitating the approximation of the transmutation process.
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Chapter 3

Solution for the MS-CADIS Adjoint Neutron
Source

The MS-CADIS method can be used to optimize MC radiation transport for the neutron

transport step of an R2S calculation provided that a suitable T(~r, En, Ep) can be obtained,

as defined in Equation 2.33. In order to understand when such an expression is attainable,

T(~r, En, Ep) at a single point is first considered, allowing for the removal of the dependence

on ~r. This gives the expression:

qp(Ep) =

∫
En

T(En,Ep)φn(En)dEn. (3.1)

This equation can be expressed in terms of a function f(φn), which is nonlinear with respect

to φn (notation abbreviated):

qp =

∫
En

f(φn)dEn, (3.2)

The function f(φn) can be expressed as a Taylor series expansion around some flux, a:

f(φn) = f(a) +
f ′(a)

1! (φn − a) +
f ′′(a)

2! (φn − a)2 . . . (3.3)

where derivatives are with respect to φn. By setting a to 0, this expansion becomes:

f(φn) = f(0) +
f ′(0))

1! (φn) +
f ′′(0)

2! (φn)
2 . . . (3.4)

The f(0) term must be 0 because decay photons are the result of neutron interactions. If φn

is sufficiently small (near a = 0) the f ′′(0) term can be truncated yielding



26

f(φn) ≈ f ′(0)φn, (3.5)

where f ′(0) can now be used for T(En,Ep) in Equation 3.1.

In this chapter the function f(φn) is linearized with respect to φn in order to obtain

an expression for T(En,Ep), starting from first principles. In Section 3.1 the mathematical

relationship between qp(Ep) and φn(En) is first put forth. In Section 3.2.1 it is shown

that in the general case (i.e., arbitrary transmutation networks and irradiation scenarios) a

relationship in the form of Equation 3.1 cannot be obtained. Section 3.2.2 shows that this

expression can be satisfied when a set of assumptions and criteria, referred to as the Single

Neutron Interaction and Low Burnup (SNILB) criteria, are valid. The SNILB criteria can be

used to obtain solutions for T(En, Ep) , T(~r, En, Ep) , and the MS-CADIS adjoint neutron

source. Section 3.3 describes a heuristic method for evaluating the extent to which the SNILB

criteria are met.

3.1 Relating Neutron Flux and Photon Emission

Density

In order to find a relationship between neutron flux and photon emission density in the form

of Equation 3.1 (to obtain T for the MS-CADIS adjoint neutron source) the transmutation

problem is formulated in terms of independent transmutation chains. This decomposition is

shown in Figure 3.1. These chains, indexed by c take the form:

N1 → · · · → Nic . (3.6)

Each chain has length ic and therefore the final nuclide in each chain is Nic . For a simple

irradiation and decay scenario consisting of an irradiation of time tirr followed by a decay of

time tdec the photon emission density at time ttot = tirr + tdec can be expressed in terms of
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Figure 3.1: Decomposition of a transmutation network into chains.

contributions from the last nuclide within every chain in the network:

qp(Ep, ttot ) =
∑
c

λc,icbc,ic(Ep)Nc,ic(ttot ). (3.7)

Here, λc,ic and bc,ic(Ep) are the decay constant and branching functions for the nuclide

ic within chain c. This formulation has several important features. Consider the chain

NA → ND → NG in Figure 3.1. The contribution of ND and NG to the photon emission

density are formulated in terms of contributions from two separate chains. The contribution

from ND comes from the chain NA → ND with ic = 2, and the contribution from NG comes

from NA → ND → NG with ic = 3. The full contribution from NG is obtained by including

the other NG production pathway: NA → ND → NH → NG with ic = 4.

The only flux-dependent term in Equation 3.7 is Nc,ic(ttot ). In order to obtain an

expression in the form of Equation 3.1 this flux dependence must be expressed explicitly. The

quantity Nc,ic(ttot ) can be expressed in terms of Nc,ic(tirr ) and Nc,j(tirr ) for j ∈ [1, ic− 1] —

the compositions of the nuclides in chain c at the end of irradiation — with the Bateman

equation (Equation 2.28), adapted here:

Nc,ic(ttot ) =Nc,ic(tirr )e
−dc,ictdec (3.8)
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+

ic−1∑
j=1

Nc,j(tirr )

[
ic−1∑
k=j

[Pc,k+1(e
−dc,ktdec − e−dc,ictdec )

dc,ic − dc,k

ic−1∏
l=j,
l 6=k

Pc,l+1

dc,l − dc,k

]]
.

It should be emphasized that the P and d terms here represent production and destruction

during the decay interval (i.e., not production/destruction during irradiation) and are not

flux-dependent. For convenience, the quantity within the larger set of square brackets in

Equation 3.8 is renamed Bc,ic,j(tdec ). This quantity represents the rate of production of

nuclide ic from nuclide j via chain c after a decay of time tdec . This simplifies Equation 3.8

to:

Nc,ic(ttot ) = Nc,ic(tirr )e
−dc,ictdec +

ic−1∑
j=1

Nc,j(tirr )Bc,ic,j(tdec ). (3.9)

The only quantities in Equation 3.9 that are flux-dependent are the nuclide concentrations.

In order to obtain an expression in the form of Equation 3.1 the flux-dependence of the

nuclide concentrations must take the form

Nc,i(tirr ) =

∫
En

Uc,i(En, tirr )φn(En)dEn, (3.10)

where Uc,i(En, tirr ) is a function that is defined by this equation. Combining Equations 3.9

and 3.10 gives the following expression for Nc,ic(ttot ):

Nc,ic(ttot ) =

∫
En

φn(En)

[
Uc,ic(En, tirr )e−dc,ictdec +

ic−1∑
j=1

Uc,j(En, tirr )Bc,ic,j(tdec )

]
dEn.

(3.11)

This equation can be combined with Equation 3.7 to obtain an expression relating qp(Ep, ttot )

and φn(En):
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qp(Ep, ttot ) =
∑
c

λc,icbc,ic(Ep)

∫
En

φn(En)

[
Uc,ic(En, tirr )e−dc,ictdec (3.12)

+

ic−1∑
j=1

Uc,j(En, tirr )Bc,ic,j(tdec )

]
dEn.

This equation is in the form of Equation 3.1, as desired. This gives the following solution for

T(En, Ep) :

T(En,Ep) =
∑
c

λc,icbc,ic(Ep)

[
Uc,ic(En, tirr )e−dc,ictdec +

ic−1∑
j=1

Uc,j(En, tirr )Bc,ic,j(tdec )

]
.

(3.13)

In other words if Uc,i(En, tirr ) for i ∈ [1, ic] can be found that satisfy Equation 3.10, an

expression for T(En, Ep) can be found in the form of Equation 3.13, for use with the MS-

CADIS adjoint neutron source. The next section explores when suitable Uc,i(En, tirr ) can be

found.

3.2 Relating Neutron Flux and Nuclide

Concentration

In Section 3.1 it was shown that a solution for T(En, Ep) can be found provided that Equation

3.10 can be used to describe the concentration of nuclides after irradiation. In this section, it

is first shown that a Uc,i(En, tirr ) that satisfies Equation 3.10 cannot be found in the case

of arbitrary transmutation chains and irradiation scenarios. Transmutation approximations

are then described in order to find a suitable Uc,i(En, tirr ), which ultimately can be used to

obtain a solution for T(En, Ep) in Equation 3.1 for use with the MS-CADIS method.
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3.2.1 General Case

The quantity Uc,i(En, tirr ) relates neutron flux to Nc,i(tirr ). The Bateman equation can be

used to obtain such a relationship by using P and d terms that represent production and

destruction during the irradiation interval from time 0 to time tirr . Due to the modeling of

each chain individually, a simplification can be made. For a given transmutation chain only

the first nuclide, Nc,1 is present at the beginning of irradiation. In other words, the initial

concentrations of all subsequent nuclides in the chain are zero. If any Nc,i for i > 1 is present

at the beginning of irradiation it is modeled as a separate chain. This assumption allows for

the Bateman equation to be simplified to the following expression,1 with the chain notation

(c) suppressed:

Ni(tirr ) =


Ni(0)e−ditirr , i = 1,

N1(0)
i−1∑
k=1

[
Pk+1

(
e−dktirr − e−ditirr

)
di − dk

i−1∏
l=1,
l6=k

Pl+1

dl − dk

]
, i > 1.

(3.14a)

(3.14b)

In this equation, destruction terms (d), which may be flux dependent, appear in exponentials.

Because this equation gives an exponential relationship between nuclide concentration and

neutron flux, it is clear that this relationship cannot be cast into the form of Equation 3.10.

This means that transmutation approximations are required in order to proceed.

3.2.2 Transmutation Approximations

In order to obtain an expression in the form of Equation 3.10 (ultimately to find an expression

for T for the MS-CADIS adjoint neutron source) it is first assumed that the parent nuclide

(Nc,1) is stable. If Nc,1 is stable then no Nc,1 is transmuted during the decay period. In this

case, Nc,1 does not contribute to the production of Nc,ic during the decay period, which
1This formulation does not account for unrolled transmutation loops. Treatment for this special case is

found elsewhere [27].
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indicates that Bc,ic,1 = 0. As a result, the expression for T(En, Ep) in Equation 3.13 no

longer requires Uc,i(En, tirr ) for i = 1, only for i ∈ [2, ic]. Therefore, finding an expression

for Uc,i(En, tirr ) can proceed using Equation 3.14b.

The exponential terms in Equation 3.14b can be simplified using the following Taylor

expansion:

e−d·tirr =

∞∑
z=0

(−d · tirr )z

z! ≈
Z∑
z=0

(−d · tirr )z

z! , (3.15)

where Z is a parameter that defines truncation. For values of d · tirr < 1 the magnitude of

the terms in the Taylor expansion decrease monotonically:

|1| > |−d · tirr | >
∣∣∣∣(d · tirr )2

2

∣∣∣∣ > ∣∣−O((d · tirr )3)
∣∣ . (3.16)

The smaller the value of d · tirr , the faster the terms decrease in magnitude. A small d · tirr

occurs when the irradiation time is short and the destruction rate is small, which has the

physical interpretation of low burnup. This means that the lower the burnup, the fewer

terms are required to accurately represent e−d·tirr , and therefore a smaller Z can be use for

truncation. Applying the Taylor expansion in Equation 3.15 to Equation 3.14b yields:

Ni(tirr ) = N1(0)
i−1∑
k=1

[Pk+1

( Z∑
z=0

(−tirr )z

z! (dzk − d
z
i )
)

di − dk

i−1∏
l=1,
l 6=k

Pl+1

dl − dk

]
, i > 1. (3.17)

The criteria for truncating the Taylor expansion in Equation 3.17 is that the Z term is much

greater in magnitude than the Z+ 1 term. As seen in Equation 3.17, this must be true for

all k ∈ [1, i− 1]. This can be expressed as:
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∣∣∣∣(dZk − dZi )
(−tirr )

Z

Z!

∣∣∣∣� ∣∣∣∣(dZ+1
k − dZ+1

i )
(−tirr )

Z+1

(Z+ 1)!

∣∣∣∣ fork ∈ [1, i− 1], i > 1, (3.18)

This criterion is met when tirr is small relative to the destruction rates, which has the physical

interpretation of low burnup. By truncating the Taylor expansion in Equation 3.17 with

Z = i−1 an expression can be found in the form of Equation 3.10. When Z = i−1, Equation

3.17 is reduced to:

Ni(tirr ) = N1(0)
tirr

i−1

(i− 1)!

i∏
j=2

Pj, i > 1. (3.19)

This is shown in Appendix A for i ∈ [2, 5]. This truncation requires that the following

condition is met, which is found by setting Z = i− 1 in Equation 3.18:

∣∣∣∣(di−1
k − di−1

i )
(−tirr )

i−1

(i− 1)!

∣∣∣∣� ∣∣∣∣(dik − dii)(−tirr )ii!

∣∣∣∣ fork ∈ [1, i− 1], i > 1. (3.20)

In order for Equation 3.19 to satisfy Equation 3.10 only one of the production rates (Pj)

may have a neutron flux dependence. Since N1 was assumed to be stable, P2 must be flux

dependent (otherwise no transmutation occurs). If P2 takes the form:

P2 =

∫
En

σ1→2(En)φn(En)dEn, (3.21)

then Equation 3.19 becomes

Ni(tirr ) = N1(0)
tirr

i−1

(i− 1)!

i∏
j=3

Pj

∫
En

σ1→2(En)φn(En)dEn, i > 1. (3.22)

This equation is now in the form of Equation 3.10. By observation, Ui(En, tirr ) is found to
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be:

Ui(En, tirr ) = N1(0)σ1→2(En)
tirr

i−1

(i− 1)!

i∏
j=3

Pj, i > 1. (3.23)

When the criteria in Equation 3.20 are not met, the Taylor expansion cannot be truncated

after the Z = i− 1 term. This means that additional terms are required to accurately capture

the behavior of the exponentials. If an additional term in included (i.e., truncation with

Z = i) Equation 3.17 is reduced to:

Ni(tirr ) = N1(0)
tirr

i−1

i!

(
i− tirr

i∑
j=1

dj

) i∏
k=2

Pk, i > 1. (3.24)

This is shown in Appendix A for i ∈ [2, 5]. This expression cannot be cast into the form

of Equation 3.10 because the product of all of the production rates is multiplied by each

destruction rate. For a given chain, if Pk is flux-dependent, dk−1 must also be flux-dependent.

This yields an expression for Ni(t) that contains product(s) of flux-dependent terms, which

is inconsistent with Equation 3.10. For example, in the case where i = 2, Equation 3.24

becomes:

N2(t) = N1(0)P2tirr −N1(0)P2
tirr

2

2 d1 −N1(0)P2
tirr

2

2 d2 (3.25)

If N1 is stable and P2 is in the form of Equation 3.21 then d1 may equal P2 (or P2 plus a

decay term). This yields the expression:

N2(t) =N1(0)
(
tirr −

tirr
2

2 d2

) ∫
En

σ1→2(En)φn(En)dEn (3.26)

−N1(0)
tirr

2

2

( ∫
En

σ1→2(En)φn(En)dEn

)2

.

In this expression N2 and φn(En) have a quadratic relation that cannot be cast into the
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form of Equation 3.10.

3.2.3 SNILB Criteria and SNILB Solution

In Section 3.1 it was shown that a solution for T(En, Ep) can be found in the case where

Uc,i(En, tirr ) can be found that satisfy Equation 3.10. In Section 3.2.2 an expression for

Uc,i(En, tirr ) for i ∈ [2, ic] was found, valid under a certain set of criteria. These criteria

are summarized in Equation 3.27. Equation 3.27a states that the low burnup criteria for

nuclide i found in Equation 3.20 must be met for nuclides i ∈ [2, ic]. Equations 3.27b and

3.27c denote that the nuclide ic must be produced by a transmutation pathway that contains

a single neutron interaction: specifically the interaction that converts N1 to N2. These three

equations in aggregate are referred to as the Single Neutron Interaction and Low Burnup

(SNILB) criteria.

∣∣∣∣(di−1
k − di−1

i )
(−tirr )

i−1

(i− 1)!

∣∣∣∣� ∣∣∣∣(dik − dii)(−tirr )ii!

∣∣∣∣ for i ∈ [2, ic], k ∈ [1, i− 1],

P2 =

∫
En

σ1→2(En)φn(En)dEn

Pj 6= Pj(φn(En)) for j ∈ [3, ic]

(3.27a)

(3.27b)

(3.27c)

Provided that these criteria are met, Uc,i(En, tirr ) for i ∈ [2, ic] from Equation 3.23 can

be substituted in Equation 3.13 to form the following solution for T(En, Ep) , referred to as

the SNILB solution for T(En, Ep) :
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T(En,Ep) =
∑
c

λc,icbc,ic(Ep)Nc,1(0)
[[
σc,1→2(En)

tirr
ic−1

(ic − 1)!

ic∏
j=3

Pc,j

]
e−dc,ictdec

+

ic−1∑
j=2

[
σc,1→2(En)

tirr
j−1

(j− 1)!

j∏
k=3

Pc,k

]
Bc,ic,j(tdec )

]

(3.28)

Recalling that Bc,ic,1 = 0 (because N1 is assumed to be stable), note that the summation over

Bc,ic,j in this equation starts at j = 2. The SNILB solution for T(En, Ep) is only dependent

on the material at ~r. Therefore T(~r, En, Ep) is resolved by obtaining T(En, Ep) for each

material in the problem and mapping this information to ~r:

T(~r, En, Ep) = T(En, Ep) for material at ~r. (3.29)

The T(~r, En, Ep) provided by Equations 3.28 and 3.29 can be substituted into Equation 2.36

to obtain the SNILB solution for the MS-CADIS adjoint neutron source.

3.3 Evaluating the SNILB Criteria

The validity of the SNILB solution for the MS-CADIS adjoint neutron source is contingent on

the SNILB criteria being met. In principle, the SNILB criteria given in Equation 3.27 could

be independently evaluated for every transmutation chain in a given material or problem.

However, since the MS-CADIS adjoint neutron source is ultimately used for the purpose of

MC VR, minor deviations from the SNILB criteria being met may still result in useful MC

VR parameters. This motivates the development of a method for assessing the extent to

which the SNILB criteria are met. Here, a heuristic method is proposed. As demonstrated in
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Section 3.2.3, if the SNILB criteria are met a T(En, Ep) can be found that satisfies Equation

2.33. Casting Equation 2.33 into a discretized form, for neutron energy group g, photon

energy group h, within discrete volume v yields:

qv,p,h =
∑
g

Tv,g,h φv,n,g, (3.30)

This implies that when the SNILB criteria are met the photon emission density in photon

energy group h resulting from the irradiation of material with some flux φn, denoted qp,h(φn),

can be expressed as the summation of contributions of irradiations from each constituent

neutron energy group (volume notation suppressed):

qp,h(φn) =
∑
g

qp,h(φn,g). (3.31)

This expression states that the superposition of the photon emission densities resulting from

irradiations of neutrons in single energy groups is equivalent the photon emission density

resulting from an irradiation with all neutron energy groups simultaneously. This important

relationship will be referred to as the “superposition property”. In situations where the SNILB

criteria are violated, this superposition relationship will not be true. The extent to which the

SNILB criteria are met for photon energy group h can therefore be quantified by ηh:

ηh =

∑
g

qp,h(φn,g)

qp,h(φn)
. (3.32)

When the SNILB criteria are met, ηh = 1. Values of ηh < 1 or ηh > 1 indicate either

that photons in group h are being produced via multiple-neutron-interaction pathways or

the burnup criteria are not being met.

If ηh > 1, the superposition property in Equation 3.31 overestimates the photon emission

density and if ηh < 1 the photon emission density is underestimated. The quantity ηh is

dependent on nuclide/material, neutron spectrum, irradiation and decay scenario, and also
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h. In order to draw conclusions about the extent to which the SNILB criteria are met it is

convenient to collapse the photon energy dimension, noting that no photon energy group is

more or less likely to have an ηh far from 1. Ideally, this collapsing would be done by taking

into account the importance of each photon energy group to the SDR, Ih:

ηI =

∑
g

∑
h

qp,h(φn,g)Ih∑
h

qp,h(φn)Ih
. (3.33)

Here, ηI accounts for the importance of different photon energy groups via weighing

factors Ih. These weighting factors are application dependent. The true importance of photon

energy groups is equivalent to the adjoint photon flux, which varies spatially and depends on

the adjoint photon source. If Ih can be obtained that capture a characteristic adjoint photon

flux, Equation 3.33 can be used to assess if the SNILB criteria are met for important energy

groups, thereby providing a more useful metric for the expected efficacy of methods the rely

on the SNILB solution for T(~r, En, Ep) .

Another approach is to assign all Ih to be equal to 1, so that all photon energy groups

are weighted equally, regardless of how important they are to the SDR. This approach is

preferable for assessing the extent to which the SNILB criteria are met in general, and when

the photon importance is not known. This approach is equivalent to calculating ηh where

there is only a single photon energy group. By setting all Ih to be equal to 1 the quantity,

designated η, is obtained:

η =

∑
g

∑
h

qp,h(φn,g)∑
h

qp,h,φn
(3.34)

=

∑
g

qp(φn,g)

qp(φn)
.

To calculate η or ηI an activation code can be used to perform irradiations using the neutron
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flux φn, and each of the constituent single-energy-group neutron fluxes φn,g individually.

This is done using a neutron spectrum of interest for an irradiation scenario of interest. The

resulting photon emission densities are used to calculate η or ηI via Equations 3.34 and 3.33,

respectively. By evaluating η or ηI for all neutron spectra and materials within a problem,

the extent to which the SNILB criteria are met can be evaluated. If the SNILB criteria

are acceptably met, the SNILB solution for the MS-CADIS adjoint neutron source will be

effective in producing MC VR parameters for SDR neutron transport.
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Chapter 4

GT-CADIS and SNILB-Violation Methods

In this chapter, a collection of methods are proposed for approximating T . These approxima-

tions of T are used to define the MS-CADIS adjoint neutron source to form implementations

of the MS-CADIS method. The first method is Groupwise Transmutation (GT)-CADIS

which provides a way of calculating T by performing a series of irradiations for the material

and irradiation scenario of interest with single-energy-group neutron fluxes. The resulting T

is equivalent to the SNILB solution for T when the SNILB criteria are met and provides one

possible approximation otherwise. For cases when the SNILB criteria are not met, modifica-

tions to GT-CADIS method are proposed in order to improve the approximation of T . The

“spectra” modification, GTS-CADIS, evaluates T using a priori spectral information. The

“background” modification evaluates T with irradiations with multiple neutron energy groups

simultaneously, providing a background spectrum for the calculation of T . The GTSB-CADIS

method has the features of both GTS- and GTB-CADIS. These methods are described in

this chapter and later demonstrated and assessed in Chapters 7 and 8.

4.1 GT-CADIS

Equations 3.28 and 3.29 provide a solution for T(~r, En, Ep) that can be used in conjunction

with the MS-CADIS adjoint neutron source (Equation 2.36) to generate optimal weight

window and biased source distributions via the CADIS method. In practice, this adjoint

neutron source must take the discrete form:

q+
v,n,g =

∑
h

Tv,g,h φ
+
v,p,h. (4.1)
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This is necessary because deterministic transport is used both to obtain φ+
v,p,h and carry

out transport with q+
v,n,g. As a result, v represents a mesh volume element of the mesh

used to carry out deterministic transport. The GT-CADIS method provides a procedure for

obtaining Tv,g,h .

If the SNILB criteria are met, then from Equation 3.30 it is apparent that

qp,h(φn,g) = Tg,h φn,g, (4.2)

for a particular material and irradiation scenario. The SNILB solution for Tg,h can then be

ascertained by solving for Tg,h :

Tg,h =
qp,h(φn,g)

φn,g
(4.3)

The GT-CADIS method obtains Tg,h by performing irradiations with an activation code

to obtain qp,h(φn,g) for use in Equation 4.3. For a single-pulse irradiation scenario, each

material in a problem is irradiated with a flux φn,g, containing neutrons in energy group g

(as illustrated in Figure 4.1). This irradiation is carried out using the tirr and tdec of interest.

Since Tg,h is not dependent on neutron flux when the SNILB criteria are met, the magnitude

of φn,g is not paramount. The magnitude of φn,g should be large enough that important

reaction channels are populated, but not so large that the SNILB criteria are violated due to

high burnup. The resulting qp,h(φn,g) reported by the activation code for all h are used with

Equation 4.3 to calculate Tg,h for all h. This procedure is carried out for all materials and

all g, meaning that the total number of irradiations required is the product of the number of

materials and the number of neutron energy groups. Since Tg,h is independent of neutron

spectra (provided that the SNILB criteria are met), Tv,g,h can be found by calculating Tg,h

for the material in v:

Tv,g,h = Tg,h for material in v. (4.4)
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Figure 4.1: Example of the spectra used for GT-CADIS irradiations for a three neutron group
case.

4.1.1 Practical Considerations

Applying GT-CADIS to realistic problems may require additional considerations for non-

conformal meshes or complex irradiation scenarios. When meshes used for deterministic

transport do not conform to geometry cells, each mesh volume element v may contain multiple

materials. In this case, Tg,h values for each material can be added by volume fraction. This

additive property is demonstrated for two materials m1 and m2 with volume fractions of V1

and V2 within v in Equation 4.5.

qp,h,total = qp,h,m1 + qp,h,m2 (4.5)

= V1
∑
g

Tg,h,m1 φn,g + V2
∑
g

Tg,h,m2 φn,g

=
∑
g

(V1Tg,h,m1 + V2Tg,h,m2)φn,g

All discussion to this point has considered only single-pulse irradiation and decay scenarios.

 Qn

 t

 Qn

 t

 Qn

 t

 Qn

 t

A B C

Figure 4.2: Splitting a multi-pulse irradiation scenario into individual pulses, with Qn
representing the neutron source intensity (n/s).
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Realistic problems may involve irradiation scenarios with multiple pulses with different

magnitudes, irradiation times, and decay times. When the SNILB criteria are met, qp,h from

different pulses are independent because photon emission only results from single-neutron-

interaction pathways. Figure 4.2 shows how a complex irradiation scenario can be thought of

as superposition of three single-pulse irradiation scenarios: A, B, and C, with Qn representing

the neutron source intensity (n/s). The total photon source density in energy group h that

results from irradiation with neutrons in group g with the scenario in Figure 4.2 is given by:

qp,g,h,total = qp,g,h,A + qp,g,h,B + qp,g,h,C. (4.6)

The contribution from each pulse can be expressed in terms of the pulse-specific values for

Tg,h and neutron flux:

qp,g,h,total = Tg,h,Aφn,g,A + Tg,h,Bφn,g,B + Tg,h,Cφn,g,C. (4.7)

The ratio of neutron fluxes for any two pulses is equivalent to the ratio of the neutron source

intensities. For example, φn,g,A and φn,g,B can be expressed in terms of φn,g,C:

qp,g,h,total = Tg,h,A
Qn,A

Qn,C
φn,g,C + Tg,h,B

Qn,B

Qn,C
φn,g,C + Tg,h,Cφn,g,C, (4.8)

which simplifies to:

qp,g,h,total =
(
Tg,h,A

Qn,A

Qn,C
+ Tg,h,B

Qn,B

Qn,C
+ Tg,h,C

)
φn,g,C. (4.9)

Dividing both sides of this equation by φn,g,C gives:

qp,g,h,total

φn,g,C
=
(
Tg,h,A

Qn,A

Qn,C
+ Tg,h,B

Qn,B

Qn,C
+ Tg,h,C

)
. (4.10)

The quantity qp,g,h,total can be obtained by irradiating the material of interest with the full

irradiation scenario (represented in the leftmost plot of Figure 4.2). Equation 4.10 states that
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by dividing qp,g,h,total by the φn,g,C used for irradiation the result is equivalent to adding

up the Tg,h from individual pulses, weighted by the relative magnitude of the pulses. For

irradiation scenarios containing many pulses, calculating Tg,h for each pulse individually may

be cumbersome. Instead, the Tg,h for the total scenario can be calculated using the left hand

side of Equation 4.10:

Tg,h,total =
qp,g,h,total

φn,g,C
. (4.11)

The choice of φn,g,C is not unique — Equation 4.10 could have been defined in terms of

φn,g,A or φn,g,B. Furthermore, since Tg,h is independent of flux when the SNILB are met,

Tg,h,total as calculated via Equation 4.11 is not sensitive to the magnitude of φn,g,C. This

strategy for calculating Tg,h using a complex irradiation scenario is also applicable to the

calculation of η and ηI described in Section 3.3.

4.1.2 GT-CADIS Procedure

In order to obtain neutron weight windows and a biased source via the GT-CADIS method,

a deterministic adjoint photon transport step can be used to obtain φ+
p,h, using the dose

rate tally(ies) of interest as the adjoint source. For each pure material in the problem, T is

calculated by performing irradiations for each neutron energy group using the irradiation

and decay scenario of interest. If mesh volume elements in the deterministic transport mesh

cover multiple geometry cells with different materials, T values for each material are mixed

by volume fraction to obtain the T of the mesh volume element. Then Equation 4.1 can be

used as an adjoint neutron source and the standard CADIS method can be carried out in

order to produce weight windows and a biased source for use with MC neutron transport. If

the SNILB criteria are not met, this procedure can still be carried out, but the resulting VR

parameters may not be effective. The expected efficacy can be predicted by calculating η or

ηI for the materials, spectra, and irradiation scenario used in the problem.
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4.1.3 Visualizing T

The quantity T can be easily visualized in the case of two-group neutron transport and

activation. This will be useful in ensuing sections where situations that violate the SNILB

criteria are considered. First consider a simple case where the SNILB criteria are met. In

this case, photons are emitted after shutdown by N2, which is produced via a single-step

reaction with the stable nuclide N1,

N1
n−→ N2, (4.12)

with the following production and destruction rates:

P2 =
∑
g

σ1→2,gφn,g, (4.13)

d1 = P2, (4.14)

d2 = λ2. (4.15)

For a sufficiently low irradiation time, such that the SNILB criteria are met, the photon

emission density at the at time ttot = tirr + tdec is given by:

q = λ2b2,he
−λ2tdecN1(0)P2

(e−d1tirr − e−d2tirr

d2 − d1

)
(4.16)

Using the parameters in Table 4.1, this equation is plotted as a function the two-group neutron

fluxes φg=0 and φg=1 as seen in Figure 4.3. Using the GT-CADIS method, irradiations are

performed with single-energy-group fluxes, represented by the red points. The slope of the

green lines represent the values of Tg=0,h and Tg=1,h. Since the plot is approximately planar

the slope with respect to φg=0 and φg=1 is constant. This means that flux magnitudes used

for these irradiations (e.g., 1013 cm−2s−1) are inconsequential, provided that they are low

enough that there is not significant burnup. Due to the planar shape of the plot, it is also
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Table 4.1: Parameters used in Figure 4.3.

parameter value
N1(0) 1 · 1022 cm−3

tirr 1 d
tdec 30 d
σ1→2,g=0 100 b
σ1→2,g=1 200 b
t1/2,1 ∞ (stable)
t1/2,2 1 y
b2,h 1

φg=0 (cm−2s−1)

0E+00
2E+13

4E+13
6E+13

8E+13
1E+14

φ g=
1
(c
m
−2 s

−1 )

0E+00

2E+13

4E+13

6E+13

8E+13

1E+14

q
p,
h
(c
m

−
3
s−

1
)

0E+00

1E+11

2E+11

3E+11

4E+11

5E+11

6E+11

Tg=0,h

g=1,hT

Figure 4.3: Photon emission density at time ttot , given by Equation 4.16 with parameters
from Table 4.1. Red points represent irradiations used to calculate Tg,h values, which are
represented by the slopes of the green lines.

apparent that the superposition property in Equation 3.31 is valid.

4.1.4 SNILB Violations Effect on GT-CADIS Estimates of T

If the SNILB criteria are not met, Equation 4.2 is not valid and the GT-CADIS method is

not guaranteed to produce useful VR parameters. The SNILB criteria can be violated by

irradiation scenarios that result in either high burnup, multiple neutron interactions yielding
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important photons, or some combination of the two. Different violation mechanisms are

expected to have different effects on Tg,h values estimated by GT-CADIS, as discussed in

this section.

4.1.4.1 High Burnup

Equation 3.27a provides a mathematical description of the low burnup portion of the SNILB

criteria. One way this criterion can be violated is if the fluence is large enough that the

concentration of important starting nuclides (i.e., N1 for any linear decay chain) decreases

significantly and cannot be assumed to be constant. The single-step reaction given in Equation

4.12 and the parameters in Table 4.2 results in such a situation. The parameters in Table 4.2

are identical to those in Table 4.1 except tirr has been changed to 7 years.

A plot of qp,h as a function of the two-group neutron fluxes φg=0 and φg=1 for this

scenario is shown in Figure 4.4. This figure shows photon emission density increases as a

function of flux for low flux and decreases as a function of flux at high flux, as the concentration

of N1 depletes. Using the GT-CADIS method, calculated Tg,h values would vary with the

choice of φg=0 and φg=1, for choices past the linear region at low flux (i.e., choices greater

than 1·1013 cm−3s−1).

Since the plane has a negative concavity, Tg,hwill tend to be overestimated by the

GT-CADIS method. For example, consider the case where the actual neutron spectrum

experienced by a volume is φ0 = 6 · 1013 cm−2s−1, φ1 = 6 · 1013 cm−2s−1: the φ0 and φ1

coordinates of the yellow point in Figure 4.4. If qp,h was calculated via Equation 3.30 using

the Tg,h values calculated by the slopes in green, it is clear that the resulting qp,h will be

much greater in magnitude than the qp,h represented by the yellow point. This could be

predicted prior to performing the GT-CADIS method by calculating ηh via Equation 3.32,

which would be found to be greater than one. Ultimately, this effect will manifest itself in

weight windows and biased sources that overestimate the importance of regions that are

subjected to significant burnup.
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Table 4.2: Parameters used in Figure 4.4.

parameter values
N1(0) 1 · 1022 cm−3

tirr 7 y
tdec 30 d
σ1→2,g=0 100 b
σ1→2,g=1 200 b
t 1

2 ,1 ∞ (stable)
t 1

2 ,2 1 y
b2,h 1

φ0 (cm−2s−1)

0E+00
2E+13

4E+13
6E+13

8E+13
1E+14 φ 1

(c
m
−2 s

−1 )

0E+00

2E+13

4E+13

6E+13

8E+13

1E+14

q
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h
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−
3
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1
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0.0E+00

5.0E+12
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2.0E+13

2.5E+13

Tg=1,h
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Figure 4.4: Photon emission density at time ttot , given by Equation 4.16 with parameters
from Table 4.2. Red points represent irradiations used to calculate Tg,h values, which are
represented by the slopes of the green lines. The yellow point represents the photon emission
density for one possible known neutron spectrum.
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4.1.4.2 Multiple Neutron Interactions

The SNILB criteria are also violated when photons are produced by pathways that involve

multiple neutron interactions, which may affect the performance of the GT-CADIS method.

Consider a reaction pathway given by

N1
n−→ N2

n−→ N3, (4.17)

where photons of interest are only emitted by N3. The analytic solution for the photon

emission density from N3 in photon group h with an irradiation of time tirr and a decay of

time tdec is found by combining Equations 3.14b and 3.7:

qp,h = λ3b3,he
−λ3tdec

N10P2P3

d2 − d1

(
e−d1tirr − e−d3tirr

d3 − d1
−
e−d2tirr − e−d3tirr

d3 − d2

)
. (4.18)

where

P2 = σ1→2,g=0φ0 + σ1→2,g=1φ1 (4.19)

P3 = σ2→3,g=0φ0 + σ2→3,g=1φ1

d1 = P2

d2 = P3 + λ2

d3 = λ3

A plot of this equation using parameters from Table 4.3 is shown in Figure 4.5. Cross

sections in Table 4.3 were chosen such that the production of N2 is dominated by interactions

with neutrons from group 0 and the production of N3 is dominated by neutrons from group 1.

In other words, the production rate of N3 is expected to be much higher when both neutron

groups are present. With the GT-CADIS method, single-energy-group irradiations are carried
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out, ostensibly represented by the red points in Figure 4.5. Since the plane has a positive

concavity, Tg,h and therefore the importance of a region will tend to be underestimated by

the GT-CADIS method: the opposite effect as described in the high burnup case in Section

4.1.4.1. For example, if the actual neutron spectrum is φ0 = 6 · 1013 cm−2s−1, φ1 = 6 · 1013

cm−2s−1 (the φ0 and φ1 coordinates of the yellow point), the qp,h calculated via Equation

3.30 using the Tg,h values calculated by the slopes in green, will be much smaller in magnitude

that the qp,h represented by the yellow point. Again, this could be predicted by calculating

ηh via Equation 3.32, which would be found to be less than one.
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Table 4.3: Parameters used in Figure 4.5.

parameter value
N10 1 · 1022 cm−3

tirr 1 d
tdec 30 d
σ1→2,g=0 500 b
σ1→2,g=1 50 b
σ2→3,g=0 1 b
σ2→3,g=1 150 b
t1/2,1 ∞ (stable)
t1/2,2 1 y
b3,h 20 d

φ0 (cm−2s−1)
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Figure 4.5: Photon emission density at time ttot , given by Equation 4.18 with parameters
from Table 4.3. Red points represent irradiations used to calculate Tg,h values via GT-CADIS,
which are represented by the slopes of the green lines. The yellow point represents the photon
emission density for one possible known neutron spectrum.
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4.2 SNILB-Violation Methods

In Section 4.1.3 it was shown that qp,h can be represented by a G-dimensional surface with G

being the number of neutron energy groups. When the SNILB criteria are met, this surface is

planar. In Section 4.1.4 it was shown that when the SNILB criteria are violated, the surface

is no longer planar. The full shape of these nonlinear G-dimensional surfaces cannot be

captured in using G Tg,h values. In this case T can be chosen to somehow approximate the

shape of the curve. These schemes, referred to as SNILB-Violation methods ideally would

have the following three properties.

1. Shape: T should be chosen such that all Tg,h values accurately represent that relative

importance of neutron energy group g to the production of decay photons in energy

group h.

2. Magnitude: T should be chosen such that the total magnitude of the photon emission

density is correct. In other words, qp,h as calculated by Equation 3.30 is equivalent to

the actual qp,h.

3. Reduction to GT-CADIS: SNILB-violation methods should reduced down to the GT-

CADIS method, thereby providing the SNILB solution for T , when the SNILB criteria

are met.

As introduced in the beginning of Chapter 3, the linearization f ′(0) in Equation 3.5 can

be used to define T . SNILB-violations methods are akin to defining T using f ′(a) where a 6= 0

(i.e., approximating the derivative around a nonzero flux) and/or accounting for nonzero

f(a), f ′′(a), f ′′′(a), etc., terms by modifying the f ′(a) term. Many schemes for generating T

values using these strategies are possible.

In this section three SNILB-violation methods are proposed and the advantages and

disadvantages of each are discussed. Like the GT-CADIS method, each one of these methods

produces T and can then be used as an implementation of the MS-CADIS method. Though
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these methods may be beneficial for both high-burnup and also multiple-neutron-interaction

scenarios, multiple-neutron-interaction scenarios will be the primary focus. This is because

multiple-neutron-interaction scenarios result in much more significant SNILB criteria violations

as will be discussed in Chapter 6. In addition, in FES analysis the SDR is commonly desired

far from the neutron source. In these cases , the adjoint photon flux will be low in the

high-burnup regions near the source, mitigating the effects of poorly approximating T . The

efficacy of the SNILB-violation methods introduced here is later tested in Chapter 8.

4.2.1 GTS-CADIS

The “spectra” modification to GT-CADIS, referred to as GTS-CADIS, uses a priori knowledge

of neutron spectra to attempt to improve T . With this method, a deterministic forward

neutron transport calculation is done prior to calculating T . A T is calculated for each volume

element v individually. For each v, irradiations are conducted in a similar fashion to the

GT-CADIS method. Instead of using a flat neutron spectrum as is done for the GT-CADIS

method (i.e., Figure 4.1), the actual groupwise neutron fluxes within v, φn,v,g are used, as

seen in Figure 4.6. The intermediate quantities T ′v,g,h are then calculated by:

T ′v,g,h =
qp,h(φn,v,g)

φn,v,g
. (4.20)

An additional irradiation is performed using all neutron energy groups simultaneously (i.e

φn,v in Figure 4.6). The T ′v,g,h values are then normalized such that total qp,h as calculated

by Equation 3.30 is equivalent to the qp,h(φn,v) from this final irradiation. This is done

using the formula:

Tv,g,h = T ′v,g,h
qp,h(φn,v)∑
g T
′
v,g,hφn,v,g

. (4.21)

With Tv,g,h calculated for all v, g, and h, the GTS-CADIS method proceeds in the same

fashion as GT-CADIS.
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Figure 4.6: Example of spectra used for GTS-CADIS irradiations for a three neutron group
case.

A graphical representation of the GTS-CADIS method is seen in Figure 4.7 for the

multiple-neutron-interaction scenario described in Section 4.1.4.2. The red points represent

irradiations conducted, with the red/yellow point representing an irradiation conducted with

φv,g. Upon normalization, the T ′v,g,h values shown in this plot would be increased, but the

ratio between them would remain the same.

GTS-CADIS offers an improvement over GT-CADIS for both high-burnup and multiple-

neutron-interaction scenarios by ensuring that the magnitude of T is correct. However, since

GTS-CADIS only uses single-energy-group irradiations like GT-CADIS, it is unlikely that

shape of T will capture the behavior associated with multiple neutron interactions. When

the SNILB criteria are met, T ′v,g,h and Tv,g,h values will be equal and will be equivalent to

the SNILB solution.

A major disadvantage of the GTS-CADIS method is it requires a deterministic estimate

of the forward neutron flux and subsequently the calculation of T for each v, which is

computationally expensive. One possible modification to this method is to calculate T ′g,h

values for each material with a flat neutron spectrum (like GT-CADIS: without the actual

spectrum in v), then normalize these T ′g,h values within each v by conducting irradiations

with qp,h(φn,v) and applying Equation 4.21. This simplification reduces the number of

irradiations required per v from G+ 1 to 1 (where G is the number of neutron energy groups).

This simplification will only be useful if T ′g,h values calculated with a flat spectrum are similar

to T ′v,g,h values calculated with the actual spectrum in v. This is more likely to be the case

for multiple-neutron-interaction pathways then for high-burnup pathways.
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Figure 4.7: Graphical representation of the GTS-CADIS method for the multiple-neutron-
interaction scenario described in Section 4.1.4.2. The red points represent irradiations
conducted, with the red/yellow point representing an irradiation conducted with φv,g.

4.2.2 GTB-CADIS

The “background” modification to the GT-CADIS method, referred to as GTB-CADIS,

attempts to improve upon the GT-CADIS method by performing irradiations with multiple

energy groups simultaneously. This should better capture the effects of multiple neutron

interactions which may occur at different neutron energies. With this method, a “background”

neutron spectrum φn,b is defined with uniform intensity across all energy groups. The

magnitude of the background spectrum should be similar to that experienced in important

regions within the problem. For each neutron energy group, a spectrum is defined that

consists of the background spectrum, with a single neutron energy group perturbed by some

multiplicative factor p. This factor may be any nonnegative value not equal to 1. For example,

p = 1.1 would result in a 10% increase in the magnitude of the flux in the perturbed energy

group, whereas p = 0.9 would result in a 10% decrease. An example of these spectra is shown

in Figure 4.8.

Irradiations are then performed using the background spectrum and each perturbed spectra.
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Values of Tg,h are then calculated using the following formula, in which the contribution of

the background spectrum to the photon emission density is subtracted from photon emission

density resulting from the perturbed neutron spectra:

Tg,h =
qp,h(φn,b + (p− 1)φn,b,g) − qp,h(φn,b)

(p− 1)φn,b,g
. (4.22)

In this formulation, Tg,h is akin to the partial derivative of qp,h with respect to φn,b,g

around the point φn,b, estimated with a linear perturbation. Likewise, Equation 4.22 is in

the form

∂qp,h

∂φn,b,g

∣∣∣
φn,b
≈ qp,h(φn,b + ∆φn,b,g) − qp,h(φn,b)

∆φn,b,g
. (4.23)

where the step size ∆φn,b,g is equal to (p− 1)φn,b,g.

A graphical representation of the GTB-CADIS method is shown in Figure 4.9 for the

multiple-neutron-interaction scenario described in Section 4.1.4.2. In both the GT- and

GTS-CADIS methods, the shape of T is determined by the slopes of the surface around the

origin. With GTB-CADIS, the shape of T is determined by the slopes of the surface around

the φn,b point. The slopes are much steeper around the φn,b point because neutron flux

in all energy groups allows for multiple neutron interactions that occur at different energy

groups to be captured. This may improve the shape of T . However, the magnitude of T may

not be correct. For example, the yellow point in Figure 4.9 represents some known neutron

spectrum. Using GTB-CADIS it is not guaranteed that calculated Tg,h values give the correct

qp,h via Equation 3.30, for any arbitrary location of the yellow point.

One advantage of the GTB-CADIS method is that unlike GTS-CADIS, detailed a priori

knowledge of the neutron spectrum for each v is not required. However, some knowledge of

the spectra may be necessary in order to choose the magnitude of the groupwise fluxes in

φn,b. Like GT-CADIS, T must be calculated only for each pure material in the problem,

and these values can be mixed by volume fraction to obtain T in each v. Furthermore, when
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Figure 4.8: Example of spectra used for GTB-CADIS irradiations for a three neutron group
case. Here, p is 1.25.

the SNILB criteria are met GTB-CADIS gives the same results as GT-CADIS. When the

SNILB criteria met, the qp,h surface is planar. Since the slopes are the same at every point,

it does not matter what point is chosen to calculate the slope. The principle disadvantage of

the GTB-CADIS method is that it does not guarantee that Tg,h values are positive for all g

and h. This means GTB-CADIS is ill-suited for high-burnup scenarios like that described

in Section 4.1.4.1, where the slope of qp,h is negative is some regions, as seen in Figure

4.4. GTB-CADIS may produce negative Tg,h values in multiple-neutron-interaction scenarios

as well, for neutron energy groups that are not important to dominant photon production

pathways but still contribute the to destruction rates of important nuclides. It is suggested

that any Tg,h produced by GTB-CADIS that are found to be negative should be replaced by

Tg,h values calculated using the standard GT-CADIS method.
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Figure 4.9: Graphical representation of the GTB-CADIS method for the multiple-neutron-
interaction scenario described in Section 4.1.4.2. The red points represent irradiations
conducted, here with p = 0.5. The yellow point represents one possible known neutron
spectrum.

4.2.3 GTSB-CADIS

The GTSB-CADIS method is a combination of the “spectra” and “background” modifications

described in Sections 4.2.1 and 4.2.2 respectively. As with GTS-CADIS, a deterministic

forward neutron transport calculation is first done. Then irradiations are conducted in similar

fashion to GTB-CADIS method. Instead of using a flat background spectrum, the known

neutron spectra for each v, φn,v is used. Perturbations are applied for each energy group

as is done with the GTB-CADIS method. An example of the neutron spectra used by the

GTSB-CADIS method is shown in Figure 4.10. Once irradiations are done for each of these

spectra, the intermediate quantities T ′v,g,h are calculated:

T ′v,g,h =
qp,h(φn,v + (p− 1)φn,v,g) − qp,h(φn,v)

(p− 1)φn,v,g
. (4.24)

These values are then normalized in a similar fashion to the GTS-CADIS method:
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Figure 4.10: Example of spectra used for GTSB-CADIS irradiations for a three neutron
group case. Here, p is 0.5.

Tv,g,h = T ′v,g,h
qp,h(φn,v)∑
g T
′
v,g,hφv,n,g

(4.25)

This process ensures that the magnitude of T is correct while capturing the behavior

of multiple neutron interactions. When the SNILB criteria are met, T produced by GTSB-

CADIS are equivalent to those produced by GT-CADIS, for the same reason stated in Section

4.2.2. Though this method combines the advantages of GTS- and GTB-CADIS into a single

method, it also combines the disadvantages. Like GTS-CADIS, T must be calculated for

each v individually, which is likely to be computationally expensive. Like GTB-CADIS,

Tg,h values are not guaranteed to be nonnegative, which means that this method may not be

suitable for high-burnup scenarios. If negative Tg,h values are encountered, it is suggested

that these individual values are recalculated with GTS-CADIS. A graphic representation of

the GTSB-CADIS method for the multiple-neutron-interaction scenario described in Section

4.1.4.2 is shown in Figure 4.11.
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Figure 4.11: Graphical representation of the GTSB-CADIS method for the multiple-neutron-
interaction scenario described in Section 4.1.4.2. The red points represent irradiations
conducted, here with p = 0.5. The red/yellow point represents an irradiation conducted with
φv,g.

4.2.4 Summary of SNILB-Violation Methods

When the SNILB criteria are not met, the SNILB solution for T is not valid and variety of

techniques can be used to ascertain T . The three techniques proposed in this section all have

advantages and disadvantages that may limit their applicability or efficacy. These properties

are summarized in Table 4.4.

Table 4.4: Advantages of GT-CADIS and SNILB-violation methods.

method
Advantage GT GTS GTB GTSB
T shape captures multiple neutron interactions X X
T magnitude correct X X
Equivalent to GT-CADIS when SNILB are met X X X X
T required only for pure materials X X
Tg,h guaranteed to be positive X X
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Chapter 5

Software Implementation

The numerical experiments conducted in this work have required the development and use of

a significant collection of computational tools. An R2S workflow was required to calculate

the SDR from MC neutron fluxes obtained using GT-CADIS or SNILB-violation methods. In

order to obtain these VR parameters, deterministic adjoint flux distributions were required, in

addition to T . Finally, mesh-based adjoint fluxes and an unbiased source must be converted

to weight windows and a biased source using the CADIS method. In this chapter, the

computational tools created to perform these operations are presented. Many components of

this software have been written within the Python for Nuclear Engineering (PyNE) toolkit.

PyNE is a trans-institutional, open-source project consisting of Python, C++, and Fortran

code pertinent to nuclear engineering simulations and analysis [35].

5.1 R2S Workflow

The PyNE R2S workflow [5] was used in order to automatically calculate the SDR in this

work. PyNE R2S is a Cartesian- and tetrahedral-mesh-based R2S workflow, that operates

entirely on CAD geometry. PyNE R2S uses DAG-MCNP5 for both MC transport steps and

the ALARA nuclear inventory analysis code. PyNE R2S has been validated with the Frascati

Neutron Generator (FNG) ITER benchmark problem [36].

For this work, only Cartesian mesh was used. A neutron transport simulation is first

done using DAG-MCNP5. Multigroup neutron fluxes are tallied using a standard MCNP5

mesh tally covering the geometry of interest for neutron activation. PyNE R2S then converts

the resulting neutron fluxes, user-supplied irradiation scenario, and CAD geometry into the

appropriate ALARA input files. Since an activation calculation must be done for each mesh
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volume element, this process requires that the material composition is known within each

mesh volume element. For Cartesian meshes, each mesh volume element may contain multiple

geometry cells and therefore multiple materials. A ray-tracing technique is used to discretize

the CAD geometry onto the mesh to obtain the volume fraction of each geometry cell with

each mesh volume element [37]. This information is then used to generate aggregate material

compositions for use in ALARA.

ALARA is then run and PyNE R2S is used to convert ALARA output to a mesh of

multigroup photon emission densities. This mesh is then used as a source for DAG-MCNP5

photon transport. This is done by utilizing the PyNE source_sampling module. This

module provides a generic method for sampling the initial position and energy of MC particles

(both neutrons and photons) from a mesh-based source with biased or unbiased sampling.

MCNP5 ships with a customizable source subroutine: source.F90. A source.F90 file was

written, incorporating the functionality of PyNE source_sampling, and was then compiled

into DAG-MCNP5. DAG-MCNP5 photon transport is run with tallies in the region(s) of

interest modified with flux-to-dose-rate conversion factors, which are used to obtain the SDR.

5.2 Deterministic Transport

PARTISN was used for all deterministic transport in this work. The PyNE partisn module

contains functionality necessary to generate PARTISN input files automatically from CAD ge-

ometries and also read PARTISN output. This is done using the same geometry discretization

capabilities described in Section 5.1. GT-CADIS and SNILB-violation methods require two

deterministic adjoint transport steps: adjoint photon transport and adjoint neutron transport.

For the adjoint photon step, the adjoint source is the detector of interest, which may be

defined a by volume in a CAD geometry or a mesh. For the adjoint neutron transport step,

the adjoint neutron source is defined by a mesh. The PyNE partisn module allows either

CAD geometry cells or a mesh to used be to define PARTISN sources. In both cases the
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source must be isotropic. The former case is implemented by discretizing the source volumes

onto the mesh using the CAD geometry discretization capabilities described in Section 5.1,

then using the mesh-based source capability.

5.3 T from GT-CADIS and SNILB-Violation Methods

A free-standing package referred to as gtcadis_tools has been written in order to calculate

T using GT-, GTS-, GTB-, and GTSB-CADIS methods, as described in Chapter 4, as well

as η and ηI as described in Section 3.3. These quantities are calculated by automatically

carrying out the necessary irradiations using ALARA and then applying the appropriate

formula to the resulting photon emission densities. In the case of T calculated by GTB- and

GTSB-CADIS, individual Tg,h values may be negative as described in Section 4.2. These

nonphysical quantities are replaced Tg,h values calculated by GT- or GTS-CADIS respectively

(as described in Section 4.2).

A few special provisions are also made in the calculation of η. In the case where both

the numerator and denominator of η are zero, η is assigned to be 1. If a material does not

emit photons after irradiation and decay, GT-CADIS or the SNILB methods will produce the

correct result, with all values in T equal to zero. Since η = 1 indicates that the GT-CADIS

method will perform optimally, assigning η = 1 in the case of no photon emission is consistent

with this designation. If the numerator of η is nonzero and the denominator is zero then η is

set to infinity.

In Chapter 6, η is evaluated for a variety of materials and nuclides. For some of these

materials/nuclides, the photon emission density after irradiation and decay is extremely

small, and dominated by the decay of a radioactive starting material. Photons emitted from

radioactive starting materials are unlikely to play a role in SDR analysis for realistic problems.

However, these photons interfere with the calculation of η. To combat this, an additional

irradiation/decay is conducted with all neutron fluxes set to zero in order to determine the
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photon emission density contribution from radioactive starting materials. This contribution

is then subtracted from both the numerator and denominator of η. The provisions made in

the calculation of η are also made in the calculation of ηI.

5.4 CADIS

Sections 5.2 and 5.3 explained how deterministic transport is conducted and how T is obtained.

Using the capabilities in these sections adjoint neutron fluxes can be obtained (via GT-CADIS

or SNILB-violation methods), which must be converted into weight windows and biased

sources via the CADIS method as discussed in Section 2.2.2. This is done using the cadis

function in the PyNE variance_reduction module. This function reads a source density

distribution from a mesh, as well as mesh-based adjoint fluxes and outputs a biased source

density distribution and weight window lower bounds in the form of an MCNP5 WWINP

file. The resulting biased source density distribution can be used for MC transport with

the biased sampling mode of the PyNE source_sampling module described in Section 5.1.

The PyNE source_sampling routine will sample these biased emission densities and adjust

the statistical weight of the particles accordingly. One limitation of this approach is that in

order to use biased neutron source sampling via GT-CADIS or SNILB-violation methods,

the forward neutron source must be defined on a mesh.
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Chapter 6

Evaluation of the SNILB Criteria for FES
Scenarios

The SNILB solution for T is only valid if the SNILB criteria are met. If this is the case,

the GT-CADIS method will produce optimal neutron VR parameters — otherwise SNILB-

violation methods are necessary. In this chapter the extent to which the SNILB criteria are

met for typical FES spectra, materials, and irradiation scenarios is explored in order to predict

the applicability of the GT-CADIS and SNILB-violation methods. A set of characteristic

neutron spectra for a first wall, shield, and vacuum vessel were obtained from a deterministic

radiation transport calculation with a 2D model of an ITER blanket module. Characteristic

materials were obtained from the ITER CLITE SDR model, version 1, release 131031. This

collection of materials should not be considered exhaustive; ITER is an experimental device

and not a fusion power plant.

Using each material in the ITER CLITE SDR model, η (defined in Equation 3.34) was

evaluated for a wide range of irradiation/decay times. Values of η far from 1 were investigated

through analysis of reaction pathways. This process was also done for ηI, (defined in Equation

3.33) in order to determine the extent to which SNILB violations affect important photon

energy groups for the case of SDR analysis. Finally, η was evaluated for every nuclide in the

FENDL-3.0 nuclear data library [38] in order to determine the extent to which the SNILB

criteria are met for nuclides that may be relevant to fusion neutronics (or other applications)

but do not appear in the ITER CLITE SDR model.
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Figure 6.1: Simplified 2D model of ITER EHF BM14, produced by Mohamed E. Sawan [39].

6.1 Characteristic Spectra

The quantities η and ηI are dependent on the neutron spectrum used for the irradiations

which determine the photon emission densities for the numerators and denominators. In order

to assess the extent to which the SNILB criteria are valid for FES scenarios, characteristic

neutron spectra were obtained. The spectra were obtained from a deterministic neutron

transport calculation using a 2D model of an ITER blanket module, originally used for

estimating nuclear heating and radiation damage parameters within published work [39]. The

model represents Enhanced Heat Flux (EHF) Blanket Module (BM) 14 and contains a first

wall, shield block, and vacuum vessel. BM14 is located on the outboard, immediately above

the ITER midplane. Since the neutron wall loading is highest near the midplane [39], and

the SNILB are expected to be violated with high fluences, neutron spectra from this model

provide a conservative choice of characteristic spectra for further analysis.

The geometry specification for this 2D model is shown in Figure 6.1. The accompanying

material specifications for each geometry volume are shown in Table 6.1. The model represents

half of EHF BM 14, with reflecting boundaries both each sides (i.e., reflecting over y = 0

and y = 62.85). An additional reflecting boundary exists on the left side of the geometry

(i.e., reflecting over x = 0) in order to account for contributions from other portions of the
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Table 6.1: Material compositions for ITER EHF BM14 2D model.

region volume fraction
stainless steel water CuCrZr Be void

first wall - - - 1.00 -
first wall finger 0.389 0.218 0.366 - 0.027
first wall support arm 0.682 0.267 0.010 - 0.041
beam 0.738 0.238 - - 0.024
shield block 0.861 0.083 - - 0.056
vacuum vessel 0.700 0.300 - - -

geometry. A vacuum boundary condition is used behind the vacuum vessel (i.e., x = 170).

Though it is difficult to discern in Figure 6.1, there is a 0.75 cm void gap connecting the void

region within the chamber and the void region between the shield block and vacuum vessel.

A ray-tracing first collision source was used in order to specify an isotropic 14.1 MeV neutron

source, distributed uniformly within the void region in front of the first wall. A complete

PARTISN input file for this geometry, materials, and source was obtained directly from the

author of the paper, Mohamed E. Sawan.

Using the provided PARTISN input file, PARTISN was run with P5S16, FENDL-2.1

nuclear data [40], and the VITAMIN-J [41] group structure (175 neutron groups). An

example neutron flux distribution for the 12.5 – 12.8 MeV energy group is shown in Figure

6.2. This figure shows that the 12.5 – 12.8 MeV energy group flux drops by four orders of

magnitude through the first wall, shield, and vacuum vessel with minimal variation in the

y-direction. Characteristic neutron spectra were then taken from locations in the first wall,

shield block, and vacuum vessel, denoted in Figure 6.1. These spectra are shown in Figure

6.3.

Figure 6.3 shows that at the first wall, fast neutrons dominate. Within the shield block,

fast, epithermal, and thermal neutron intensities are commensurate, in the 1011 – 1012 range.

Within the vacuum vessel, fast and epithermal neutrons have intensities that are an order

of magnitude lower than thermal neutron intensities. The total neutron flux for the three
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Figure 6.2: Neutron flux distribution for the 12.5 – 12.8 MeV energy group.
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Figure 6.3: Characteristic neutron fluxes from the locations shown in Figure 6.1. Total fluxes
for the first wall, shield, and vacuum vessel are 3.18 · 1014, 4.27 · 1013, and 9.57 · 1010 cm−2 s−1,
respectively.

characteristic spectra are 3.18 · 1014, 4.27 · 1013, and 9.57 · 1010 cm−2 s−1, respectively. These

three spectra are both characteristic of neutron spectra found within FES and provide variety

in terms of relative intensities of fast, epithermal, and thermal neutrons. These properties

make these spectra good choices for further investigation of the validity of the SNILB criteria

for FES applications.
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6.2 Characteristic Materials

Characteristic materials are required to assess the extent to which the SNILB criteria are

met within FES scenarios. For this, the ITER CLITE SDR MCNP5 model, version 1, release

131031 was chosen as a representative sample of typical FES materials. This model is a

detailed 40◦ sector endorsed by the ITER organization for SDR analysis. Though in the

past separate material definitions were used for transport and activation (in order to save

computer memory for transport), this model contains complete material definitions suitable

for activation [42]. In addition to pure materials, this model contains some mixtures of

pure materials (e.g., 94.89 vol. % SS316L(N)-IG and 5.11 vol. % water mixture) used within

homogenized regions of the problem. For this analysis only the 22 pure materials within the

geometry were considered, with the understanding that any mixture can be created through

the linear combination of these materials.

The pure materials from this model are shown in Table 6.2 along with brief descriptions.

Each material is assigned a unique name that will be used throughout the remainder of

this document. Several of these materials are the names of elements (i.e., “beryllium”,

“copper”, “tungsten”). These refer to bulk materials, with impurities present as specified by

manufacturers. To avoid confusion, written-out names will be used to specify these mixtures,

whereas chemical symbols (i.e., “Be”, “Cu”, “W”) will be used to specify pure elements.

Several materials in Table 6.2 contain “M” followed by a number in the unique name. This is

the MCNP material number within the model and is only present to create a unique name.

Though these materials (e.g., SS316L M106, SS316L M108) are similar in composition, the

importance of impurities in nuclear activation analysis motivates the inclusion of all variants.

In addition to analysis using the CLITE materials, analysis with all nuclides in the

FENDL-3.0 nuclear data library is also done, to account for any nuclides that may be

important to FES analysis but not present within the CLITE model. This is discussed in

Section 6.5.
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Table 6.2: Materials from the ITER CLITE SDR model, version 1, release 131031 and
accompanying details [43].

Unique name Description/comments
Beryllium 99 w% Be, additional impurities, first wall material
Concrete Bioshield material
Copper Oxygen-free copper, 99 w% Cu, additional impurities, for elec-

tronics
CuCrZr-IG Additional impurities, for blanket modules
NiAl Bronze CuAl10Ni5Fe4, additional impurities, for blanket
SS304 Grade X5CrNi18-10, for vacuum vessel ports
SS304B4 A borated steel for in-wall shielding
SS304B7 A borated steel for in-wall shielding
SS304L Grade X2CrNi18-9, for vacuum vessel ports
SS304LN Grade X2CrNiN18-10 (No. 1.4311) austenitic stainless steel, for

vacuum vessel/cryostat thermal shields
SS304/304L Dual marked austenitic steel for cryostat
SS316L M106 Grade X2CrNiMo17-12-2, for vacuum vessel piping, vacuum vessel

ports piping, upper and equatorial generic port plug piping
SS316L M108 EN grade No. 1.4404, for divertor piping
SS316L M111 Austenitic stainless steel for PF coil
SS316LN Austenitic stainless steel for PF coil
SS316L(N)-IG M100 Austenitic steel for blanket
SS316L(N)-IG M101 Austenitic steel for divertor, vacuum vessel bars, vacuum vessel

ports, vacuum vessel gravity supports, upper and equatorial
generic port plugs

SS430 For in-wall shielding
Steel 660 Grade X6NiCrTiMoVB25-15-2 (No. 1.4980), for blanket
Tungsten Guaranteed 99.96 w% W, numerous impurities, manufacturer:

Plansee AG, used in divertor
Water Specification includes 2H
XM-19 Austenitic steel used within blanket
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6.3 Evaluation of η for FES Materials

As discussed in Section 3.3, the quantity η can be used to assess the extent to which the

SNILB criteria are met. The quantity ηI can assess the extent to which the SNILB criteria

are met for important reaction pathways (i.e., pathways that produce photons important to

a response function), which ultimately determines the efficacy of the GT-CADIS method.

However, ηI requires the assignment of importance factors to photon energy groups. This is

an application-specific task, as different applications may require different response functions.

For this reason, the evaluation of η is attractive for drawing general conclusions about the

extent to which the SNILB criteria are met, and the general applicability of the GT-CADIS

method. The evaluation of ηI for the specific application of SDR analysis is done in the next

section.

The quantity η was evaluated for each of the 22 materials in Table 6.2 using each of the

three neutron spectra in Figure 6.3 for a sweep of irradiation and decay times. For the sweep,

30 irradiation and 30 decay intervals were chosen, logarithmically spaced between 100 s and

109 s (∼ 31.7 years). For each combination of irradiation and decay times, η was evaluated

using the software described in Section 5.3. The η values were then plotted.

An example of such a plot is shown in Figure 6.4 for beryllium and the first wall spectrum.
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Figure 6.4: Example η plot: beryllium from Table 6.2 with the first wall neutron spectrum
from Figure 6.3.
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Table 6.3: Minimum and maximum η values for the materials in Table 6.2, the spectra from
Figure 6.3, and irradiation and decay times sweeping over the interval 101 – 109 s.

η

first wall shield vacuum vessel
Material min max min max min max
Beryllium 0.83 1.72 0.89 2.10 1.00 1.00
Concrete 1.00 2.17 1.00 1.37 1.00 1.00
Copper 0.90 1.04 0.85 1.02 1.00 1.00
CuCrZr-IG 0.92 1.18 0.92 1.28 1.00 1.00
NiAl Bronze 0.94 1.26 0.88 1.67 1.00 1.00
SS304 0.98 1.12 0.95 1.15 1.00 1.00
SS304B4 0.93 1.13 1.00 1.07 1.00 1.00
SS304B7 0.93 1.13 1.00 1.07 1.00 1.00
SS304L 0.98 1.12 0.95 1.15 1.00 1.00
SS304LN 1.00 1.12 1.00 1.08 1.00 1.00
SS304/304L 1.00 1.12 1.00 1.08 1.00 1.00
SS316L M106 0.89 1.27 0.83 1.63 1.00 1.00
SS316L M108 0.97 1.17 0.88 1.30 1.00 1.00
SS316L M111 1.00 1.13 1.00 1.08 1.00 1.00
SS316LN 1.00 1.13 1.00 1.08 1.00 1.00
SS316L(N)-IG M100 0.95 1.14 0.96 1.15 1.00 1.00
SS316L(N)-IG M101 0.95 1.14 0.96 1.15 1.00 1.00
SS430 0.96 1.19 1.00 1.07 1.00 1.00
Steel 660 1.00 1.18 0.89 1.28 1.00 1.00
Tungsten 0.06 2.84 0.59 1.20 1.00 1.00
Water 1.00 1.00 1.00 1.00 1.00 1.00
XM-19 0.94 1.13 0.97 1.14 1.00 1.00

The irradiation and decay times used to generate each square in the plot are the times at the

center of the square. This figure shows that for irradiation times less than ∼ 105 s, the SNILB

criteria are met. At long irradiation times, the superposition assumption in Equation 3.31

either overestimates the photon emission density (red region, η > 1), or underestimates (blue

region, η < 1). The maximum overestimation is η = 1.73 and the minimum underestimation

is η = 0.83. This minimum and maximum information, as well as the analogous information

for the η plots for each material and neutron spectra are shown in Table 6.3.

In Table 6.3 it can be seen that for the majority of the material and spectrum combinations,
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η is near 1.0. For most materials, η has less deviation from 1 for the shield spectrum than

the first wall spectrum. With the vacuum vessel spectrum, every material yielded η = 1.00

for all irradiation/decay times. In the η plot in Figure 6.4, and the other η plots in this

section, η is near 1 at short irradiation times and deviates at long irradiation times. This

evidence suggests the general trend that η deviation increases with fluence. This is consistent

with the SNILB criteria: both burnup and the importance of pathways that involve multiple

neutron interactions are positively correlated with fluence.

Though most η values in Table 6.3 are near 1, nearly all materials except water had at

least a 10% deviation for some combination of spectrum and irradiation/decay scenario. An

η of 1.1 indicates that GT-CADIS will overestimate the importance of a material by 10%.

Since VR parameters generally vary by many orders of magnitude, 10% overestimations

of importance are unlikely to have a significant impact on performance. Since Table 6.3

shows minimum and maximum deviations from η = 1 for each of the spectra, some of these

deviations may result from irradiations that are unlikely to occur in FES applications. For

example, concrete, a bioshield material is unlikely to experience a first wall spectrum, let

alone for 109 s.

Despite the fact that most η deviations are small, and some η deviations result from

material, spectra, and irradiation/decay scenario combinations unlikely to occur in FES

applications, it worthwhile to explore the mechanisms that result in η deviations in order

to better understand how the SNILB criteria can be violated. The reaction pathways that

cause these discrepancies are determined for the six materials with the largest deviation from

η = 1: beryllium, NiAl bronze, concrete, tungsten, SS316L M106, and SS316L M108. All

of these materials have η deviations of at least 30%. This analysis is done in the following

subsections.
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Figure 6.5: Plots of η for beryllium using the first wall and shield neutron spectra from
Figure 6.3.

6.3.1 Beryllium

Many materials in Table 6.3 showed their largest deviations from η = 1 with the first wall

spectrum. Since beryllium is the ITER first wall material, it is guaranteed to experience this

spectrum, so it is of special interest. As mentioned in Section 6.2, the beryllium material is

not exclusively Be, but contains a large number of impurities, including 181Ta. A full material

specification can by found within ITER documents [42].

The η plots for beryllium using the first wall and shield spectra are shown in Figure 6.5.

The η plot for the vacuum vessel spectrum is omitted here (and in proceeding sections for

other materials) because η = 1.00 for all irradiation and decay times, as seen in Table 6.3.

The plots in Figure 6.5 have a similar shape, with blue and red regions appearing at similar

irradiation and decay times.

6.3.1.1 η > 1

The mechanism causing the η > 1 behavior was first explored. This was done with an

ALARA calculation using the first wall spectrum for an irradiation time of 109 s and a decay

time of 106 s. This combination of irradiation and decay appears in the middle of the red
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Table 6.4: Values of η for nuclides from the irradiation of the beryllium material, with an
irradiation time of 109 s and a decay time of 106 s. The numerator and denominator of η,∑
g

qp(φn,g) and qp(φn) respectively are also included. Nuclides appear in descending order

of qp(φn).

nuclide
∑
g

qp(φn,g) (s−1cm−3) qp(φn) (s−1cm−3) η

total (all nuclides) 1.05 ·109 6.23·108 1.68
Top 11 nuclides:
55Fe 1.79·108 1.54·108 1.16
54Mn 1.10·108 1.15·108 0.963
60Co 1.56·108 1.13·108 1.39
57Co 1.20·108 1.10·108 1.08
58Co 9.99·107 6.05·107 1.65
192Ir 2.98·104 1.29·107 2.32·10−7

191mIr 4.65·104 1.00·107 4.61·10−7

185Os 5.18·102 8.00·106 6.47·10−5

46Sc 6.14·106 7.42·106 0.827
51Cr 5.99·106 6.07·106 0.987
182Ta 3.11·108 5.21·106 59.8

region within Figure 6.5(a). This irradiation and decay scenario resulted in an η of 1.68. In

addition to total photon emission densities, ALARA outputs photon emission densities for

each nuclide individually. This allows for the calculation of η for individual nuclides. Table

6.4 show η values for the top 11 nuclides that contribute to photon emission density. It also

shows the photon emission density calculated via the superposition of single-energy-group

neutron irradiations (i.e., the numerator of Equation 3.34) and the photon emission density

calculated with an irradiation of all energy groups simultaneously (i.e., the denominator of

Equation 3.34). Note that the summation over all photon energy groups is suppressed.

Table 6.4 shows that the largest contributor to the photon emission density is 55Fe, with

an η of only 1.16. Most of the other nuclides have large η deviations as well, notably 192Ir,
191mIr, 185Os, with η values close to zero. The main cause of the overall η value of 1.68 for the

beryllium material is the overestimation of the 182Ta photon emission density, with η = 59.8,

which suggests an excess of 182Ta.

Using the ALARA tree file output capability it was found that 182Ta results from 181Ta,
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182W, and 183W starting nuclides. During irradiation, the number densities of 181Ta and 182W

decreased by factors of 58.7 and 19.6, respectively. In other words, the low-burnup component

of the SNILB criteria is egregiously violated. This manifests itself in an η much greater than

1.0 because irradiations with neutrons from a single energy group cause significantly less

burnup then irradiating will all energy groups simultaneously, so the 182Ta production rate

does not slow down as much. For the 175 single-energy-group irradiations (with the first

wall spectrum) 181Ta had an average burnup of less than 2%. In conclusion, though 182Ta

is a minor contributor to the total photon source density when irradiating with all energy

groups simultaneously, the burnup of its parents violates the SNILB so severely that the

total photon emission density calculated though groupwise irradiations differs by a factor of

59.8, skewing η. This mechanism is consistent with the high-burnup effect on the GT-CADIS

estimate of T , as described in Section 4.1.4.1.

6.3.1.2 η < 1

To investigate the cause of the blue region in Figure 6.5(a), an ALARA calculation was

done using the first wall neutron spectrum with an irradiation time of 2 · 106 s and a decay

time of 2 · 105 s. This resulted in an η of 0.889. As was done in Section 6.3.1.1, a table

Table 6.5: Values of η for nuclides from the irradiation of the beryllium material, with an
irradiation time of 2 · 106 s and a decay time of 2 · 105 s. The numerator and denominator
of η,

∑
g

qp(φn,g) and qp(φn) respectively are also included. Nuclides appear in descending

order of qp(φn).

nuclide
∑
g

qp(φn,g) (s−1cm−3) qp(φn) (s−1cm−3) η

total (all nuclides) 4.64·108 5.22·108 0.889
Top 5 nuclides:
187W 1.69·108 1.68·108 1.00
24Na 1.09·108 1.09·108 1.00
182Ta 1.03·108 9.38·107 1.09
183Ta 4.58·105 6.69·107 0.00685
58Co 2.33·107 2.16·107 1.08
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of η and its subcomponents for the top contributing nuclides is shown in Table 6.5. This

table shows that groupwise irradiations result in a deficit in photon emission density of

5.22 · 108 − 4.64 · 108 = 5.80 · 107 cm−3s−1. Besides 183Ta, every nuclide in the top 5 is within

10% of η = 1.0. This deficiency is entirely accounted for by the lack of 183Ta. The production

of 183Ta is dominated by:

181Ta
(1.0)

(n, γ)−−−→ 182Ta
(0.00994)

(n, γ)−−−→ 183Ta
(0.00803)

other reactions−−−−−−−−→ . . .
(0.000456)

(6.1)

where the numbers in parenthesis denote the number density of each nuclide relative to

the parent (181Ta). This pathway involves two neutron interactions and therefore violates

the single-neutron-interaction portion of the SNILB criteria. The underestimation of 183Ta

production comes from the fact that the two neutron interactions occur predominantly at

different neutron energy groups. Figure 6.6 shows the amount of 182Ta and 183Ta produced as

a function of neutron energy using groupwise irradiations for this irradiation/decay scenario.

The production of 182Ta is dominated by a single neutron energy group: 3.93 –5.04 eV. The

production of 183Ta comes primarily from the two lowest energy neutron groups, despite the

fact that only a small amount of 182Ta is present.

This observation is supported by the cross section data shown in Figure 6.7. In this plot,

the 3.93 –5.04 eV energy group is highlighted and shows that a large resonance for 182Ta

occurs within this group. Likewise, the cross section for 183Ta production in this group is

several orders of magnitude lower than the cross sections for lower neutron energies. In

conclusion, η is less than 1.0 because groupwise irradiations underestimate the production

of 183Ta because it is produced via a pathway involving multiple neutron interactions that

primarily occur at different energies. This mechanism is consistent with the mechanism

originally described in Section 4.1.4.2.
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Figure 6.6: 182Ta and 183Ta production as function of neutron energy using groupwise
irradiations with an irradiation time of 2 · 106 s and a decay time of 2 · 105 s.
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Figure 6.7: Cross sections for 182Ta and 183Ta production from ENDF/B-VII.1 [44]. Dashed
lines show the bounds of the 3.93 – 5.04 eV energy group.

6.3.2 Concrete

Plots for η for the concrete material are shown in Figure 6.8. Unlike the beryllium material,

η is never less than 1 for concrete. However, η is greater than 2 for scenarios with the longest
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Figure 6.8: Plots of η for concrete using the first wall and shield neutron spectra from Figure
6.3.

irradiation and decay times. To investigate this, an ALARA calculation was done with an

irradiation time of 1 ·109 s and a decay time of 1 ·106 s. Values for η for the top 5 contributing

nuclides are shown in Table 6.6. From this table is apparent that the η > 1 behavior comes

from an excess of 22Na. This nuclide is predominantly produced and subsequently destroyed

by the following pathway:

23Na
(1.0)

(n, 2n)−−−→ 22Na
(0.00126)

(n, p) or β+ decay−−−−−−−−−−→ 22Ne
(0.00123)

(6.2)

Though this mechanism involves two neutron interactions, it does not violate the single-

neutron-interaction portion of the SNILB criteria because the nuclide of interest, 22Na, is

in fact produced by a single neutron interaction. Instead, this mechanism violates the

low-burnup portion of the SNILB criteria (Equation 3.27a). For the transmutation chain

beginning with 23Na and ending with 22Na Equation 3.27a, simplifies to

(d1 + d2)tirr � 2. (6.3)

It is clear that tirr is large relative to d2 because nearly all of the 22Na is transmuted to 22Ne.
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Table 6.6: Values of η for nuclides from the irradiation of the concrete material, with an
irradiation time of 1 · 109 s and a decay time of 1 · 106 s. The numerator and denominator
of η,

∑
g

qp(φn,g) and qp(φn) respectively are also included. Nuclides appear in descending

order of qp(φn).

nuclide
∑
g

qp(φn,g) (s−1cm−3) qp(φn) (s−1cm−3) η

total (all nuclides) 1.04·1010 6.57·109 1.58
Top 5 nuclides:
55Fe 3.27·109 2.81·109 1.17
54Mn 1.60·109 1.74·109 0.919
37Ar 1.76·109 1.58·109 1.12
22Na 3.52·109 1.45·108 24.3
46Sc 2.09·107 9.02·107 0.232

This violation is exacerbated by the fact that the two neutron interactions have cross sections

that peak at much different neutron energies, as seen in Figure 6.9. The first reaction in

Equation 6.2, 23Na(n, 2n)22Na is a threshold reaction that only occurs above ∼13.0 MeV.

The second reaction 22Na(n, p)22Ne has a much lower cross section above 13.0 MeV than at

thermal energies. These cross sections further explain the η > 1 behavior: with groupwise

irradiations, irradiations with high-energy neutrons result in production of 22Na without

significant (n,p) destruction. When irradiation is done with all energy groups simultaneously,

the 22Na produced from high-energy neutrons is consumed by reactions with low-energy

neutrons.

Since concrete is used for the ITER bioshield it is unlikely to experience the first wall or

shield spectra. Nonetheless, the mechanism described in this section may be relevant to any

material containing 23Na that does experience these spectra.
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Figure 6.9: Cross sections for 22Na and 22Ne production via Equation 6.2 from ENDF/B-VII.1.

6.3.3 NiAl Bronze

Plots of η for NiAl bronze are shown in Figure 6.10. Qualitatively, the shape of these plots

appear similar to those of beryllium in Figure 6.5. It was confirmed by an ALARA calculation

with an irradiation time 2 · 106 s and a decay time of 2 · 105 s that the blue region results
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Figure 6.10: Plots of η for NiAl Bronze using the first wall and shield neutron spectra from
Figure 6.3.



81

Table 6.7: Values of η for nuclides from the irradiation of the beryllium material, with an
irradiation time of 1 · 109 s and a decay time of 1 · 106 s. The numerator and denominator
of η,

∑
g

qp(φn,g) and qp(φn) respectively are also included. Nuclides appear in descending

order of qp(φn).

nuclide
∑
g

qp(φn,g) (s−1cm−3) qp(φn) (s−1cm−3) η

total (all nuclides) 1.067·1012 9.577·1011 1.11
Top 10 nuclides:
60Co 4.361·1011 4.477·1011 0.974
57Co 2.364·1011 2.183·1011 1.08
58Co 1.859·1011 1.165·1011 1.6
54Mn 8.666·1010 7.925·1010 1.09
65Zn 5.926·108 4.161·1010 0.0142
55Fe 4.546·1010 3.970·1010 1.15
59Fe 4.553·109 7.084·109 0.643
95Nb 3.106·107 1.862·109 0.0167
92mNb 1.674·109 1.604·109 1.04
182Ta 6.701·1010 7.207·108 93.0

from a deficit of 183Ta, via the same mechanism described in Section 6.3.1.2.

Within the red region, top contributing nuclides are seen in Table 6.7. As with beryllium,

an excess of 182Ta is observed from the burnup of 181Ta. In addition, 58Co, the nuclide with

the third-highest photon emission density has an η of 1.6. 58Co is produced via a complex

network of reactions from nuclides present within the starting materials: 58Ni, 60Ni, and 59Co.

After irradiation, 58Ni is burned up by a factor of 0.859 and 60Ni and 59Co number densities

increase by factors of 1.14 and 1.79 respectively. The fact that important nuclides both

significantly increased and decreased in number density from irradiation indicates that the

SNILB criteria are violated via multiple mechanisms which may include those which applied

to the red regions for beryllium and concrete as discussed in Sections 6.3.1.1 and 6.3.2.

6.3.4 Tungsten

The η plots for tungsten are shown in Figure 6.11. These plots are more complex than plots

shown previously. The first wall plot has two distinct red and two distinct blue regions,
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Figure 6.11: Plots of η for tungsten using the first wall and shield neutron spectra from
Figure 6.3.

though all of these regions occur at long irradiation times. The shield plot only has one blue

region, but this region extends to lower irradiation times than the blue region in the first

wall plot. Likewise, it was found that a multitude of nuclides contribute to these deviations

from η = 1.0.

An ALARA calculation was carried out with an irradiation time of 109 s and a decay

time of 3 · 107 s, yielding a total η of 2.55. The top 11 contributing nuclides by photon

emission density are shown in Table 6.8. This table shows that nearly every nuclide within

the top 11 greatly deviates from η = 1.0, with 7 nuclides deviating by more than an order of

magnitude. The complex shape of the η plots — especially the dependence of η on decay

time in the first wall plot — comes from different collections of these nuclides dominating

the photon emission density at different times. Though some of the nuclides in Table 6.8

originate from impurities, many of the nuclides (e.g., 185Os) originate from the W within

the starting material, indicating that this SNILB violation is inherent within the tungsten

material.
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Table 6.8: Values of η for nuclides from the irradiation of the tungsten material, with an
irradiation time of 109 s and a decay time of 3 · 107 s. The numerator and denominator of η,∑
g

qp(φn,g) and qp(φn) respectively are also included. Nuclides appear in descending order

of qp(φn).

nuclide
∑
g

qp(φn,g) (s−1cm−3) qp(φn) (s−1cm−3) η

total (all nuclides) 5.69 ·1011 2.23 ·1011 2.55
Top 11 nuclides:
185Os 4.53 ·106 7.03 ·1010 6.44·10−5

192Ir 1.37 ·104 6.99 ·1010 1.96·10−7

182Ta 2.39 ·109 3.61 ·1010 0.0662
181W 4.69 ·1011 1.86 ·1010 25.2
193Pt 6.65 ·103 1.36 ·1010 4.89·10−9

184Re 4.27 ·1010 6.31 ·109 6.76
184mRe 4.08 ·1010 6.12 ·109 6.67
60Co 2.15 ·109 1.37 ·109 1.57
185W 2.05 ·108 1.88 ·108 1.09
194nIr 4.58 ·105 1.81 ·108 2.53 ·10−9

179Ta 1.18 ·1010 1.17 ·108 101

6.3.5 SS316L M106 and M108

The SS316L M106 and M108 materials have similar compositions. The principle difference

between these two materials is that M106 has more than twice as much 181Ta as M108

and also contains Ti and Cu, which are not present in M108. These materials are used

for piping within the vacuum vessel, port plugs, and divertor. Due to the small quantities

of these materials present in the ITER device, the Ta content is not subject to standard

radioprotection requirements [43].

Plots of η for the first wall and shield spectra for M106 and M018 are shown in Figures

6.12 and 6.13. These plots have similar shapes to the plots of the beryllium material in

Figure 6.5, suggesting that 181Ta may be the cause of the SNILB violations as it was for the

beryllium material. Plots of η were also created for M106 and M108 with 181Ta removed.

The minimum and maximum η values for these plots are shown in Table 6.9. This table

shows that 181Ta appears to be the principle contributor to the largest SNILB violations,
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Figure 6.12: Plots of η for SS316L (M106) using the first wall and shield neutron spectra
from Figure 6.3.
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Figure 6.13: Plots of η for SS316L (M108) using the first wall and shield neutron spectra
from Figure 6.3.

occurring in the shield. Within the shield, η values for M106 and M108 without 181Ta are

similar to those found for structural stainless steels found in Table 6.3.
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Table 6.9: Minimum and maximum η values for M106 and M108 in Table 6.2 with and
without 181Ta, the spectra from Figure 6.3, and irradiation and decay times sweeping over
the interval 101 – 109 s.

η

first wall shield vacuum vessel
SS316L M106 0.89 1.27 0.83 1.63 1.00 1.00
SS316L M106, no 181Ta 1.00 1.14 1.00 1.08 1.00 1.00
SS316L M108 0.97 1.17 0.88 1.30 1.00 1.00
SS316L M108, no 181Ta 1.00 1.14 1.00 1.08 1.00 1.00

6.4 Evaluation of ηI for FES Materials

In Section 6.3, η was evaluated for all materials in the ITER CLITE SDR model using

characteristic spectra for a sweep of irradiation and decay times. As discussed in Section 3.3,

this evaluation of η provides an estimate of the extent to which the SNILB criteria are met

for these scenarios. However, since the formulation of η in Equation 3.34 weights all energy

groups equally, η does not directly measure the extent to which the GT-CADIS method

will be effective. The GT-CADIS method can be effective if the SNILB criteria are violated,

provided that the pathways which violate the SNILB criteria do not result in a significant

quantity of photons in energy groups that are important. The opposite is also true; the case

of η = 1.0 does not definitively indicate that the GT-CADIS method will be effective. It

is possible that the SNILB criteria are met for pathways that produce a large quantity of

unimportant photons, washing out the SNILB violations for important photons.

This issue is addressed with the quantity ηI defined in Equation 3.33. This quantity

weights the photon intensity within each photon energy by factors Ih. For ηI to be meaningful,

Ih must represent the importance of each photon energy group relative to a specific detector

response function. Mathematically, Ih should be equivalent to adjoint photon flux resulting

from adjoint transport using the detector response function of interest as the adjoint source

(per Equation 2.8).

The response function of interest is application-specific; for SDR analysis, flux-to-dose-
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Figure 6.14: ICRP-74 pointwise flux-to-dose-rate conversion factors, collapsed into 42 energy
groups using log-log interpolation.

rate conversion factors give the shape of the detector response function in energy space.

However, since maintenance operations may be required in many different areas of a device,

the position of the detector is not well-defined. Furthermore, even for a simple detector (e.g.,

flux-to-dose-rate conversion factors at a single point), the spectral shape of the adjoint flux is

expected to vary strongly as a function of position due to the energy-dependence of photon

cross sections. For these reasons it is challenging to select adjoint photon fluxes to use for Ih

that will yield useful ηI. One solution is to simply use flux-to-dose-rate conversion factors as

Ih; forgoing the introduction of any transport effects. Generally speaking, flux-to-dose-rate

conversion factors are smooth functions that increase with energy. Since high-energy photons

generally have longer mean free paths than low-energy photons, the disparity between high-

and low-energy Ih values is less when using flux-to-dose-rate conversion factors for Ih as

opposed to adjoint fluxes. This means that when using flux-to-dose-rate conversion factors as

Ih, any differences observed between ηI and η may be less than if adjoint fluxes are used for

Ih.

For analysis in this section (and the rest of this work) ICRP-74 flux-to-dose-rate conversion

factors were used for Ih. In order to do this, the pointwise ICRP-74 data was discretized into
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the 42 VITAMIN-J photon energy groups. This was done using the pointwise_collapse

function in the PyNE bins module. Log-log interpolation was used for this collapsing. The

lowest energy point in the pointwise data is 1 keV. The first energy bin in the 42 group

structure is 0.0 – 1.0 keV, so this bin was assigned the flux-to-dose-rate conversion factor

equal to that of the 1 keV point. For energy bins above the highest energy point in ICRP-74

(10 MeV), flux-to-dose-rate conversion factors were extrapolated. The 42-group discretization

is compared to the pointwise data in Figure 6.14.

Using ICRP-74 flux-to-dose-rate conversion factors for Ih, ηI plots were created in the

same fashion as the η plots produced in Section 6.3. The minimum and maximum ηI values

from these plots are shown in Table 6.10. In general, ηI values in this table are close to the η

values in Table 6.3, indicating that violations of the SNILB criteria for these materials occur

for photons that are important with respect to dose rates. Values are within 20% of the

corresponding η values from Table 6.3 for all materials except for the concrete and tungsten:

materials identified in Section 6.3 to have the largest SNILB criteria violations.

In Section 6.3 it was concluded that for typical FES materials, neutron spectra, and

irradiation scenarios, the SNILB criteria are generally met, with minor violations. No major

violations were identified from the calculation of ηI that did not occur in the calculation of

η. These results indicate that the GT-CADIS method should be effective for typical FES

scenarios and that either η or ηI can be used to estimate this efficacy.
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Table 6.10: Minimum and maximum ηI values using ICRP-74 flux-to-dose-rate conversion
factors for Ih for the materials in Table 6.2, the spectra from Figure 6.3, and irradiation and
decay times sweeping over the interval 101 – 109 s.

η

first wall shield vacuum vessel
Material min max min max min max
Beryllium 0.99 1.77 0.99 1.75 1.00 1.00
Concrete 1.00 16.0 1.00 4.77 1.00 1.00
Copper 0.95 1.03 0.94 1.01 1.00 1.00
CUCRZR-IG 0.99 1.09 0.99 1.18 1.00 1.00
NiAl Bronze 0.99 1.30 0.99 1.43 1.00 1.00
SS304 0.93 1.21 1.00 1.15 1.00 1.00
SS304B4 0.88 1.23 1.00 1.07 1.00 1.00
SS304B7 0.88 1.23 1.00 1.07 1.00 1.00
SS304L 0.93 1.21 1.00 1.15 1.00 1.00
SS304LN 0.96 1.20 1.00 1.08 1.00 1.00
SS304/304L 0.95 1.20 1.00 1.08 1.00 1.00
SS316L M106 1.00 1.38 0.97 1.44 1.00 1.00
SS316L M108 0.99 1.26 0.98 1.21 1.00 1.00
SS316L M111 0.97 1.22 1.00 1.08 1.00 1.00
SS316LN 0.97 1.22 1.00 1.08 1.00 1.00
SS316L(N)-IG M100 0.89 1.23 1.00 1.15 1.00 1.00
SS316L(N)-IG M101 0.89 1.23 1.00 1.15 1.00 1.00
SS430 0.88 1.23 1.00 1.07 1.00 1.00
Steel 660 0.99 1.30 0.99 1.21 1.00 1.00
Tungsten 0.31 1.94 0.26 1.21 1.00 1.00
Water 1.00 1.00 1.00 1.00 1.00 1.00
XM-19 0.89 1.20 1.00 1.13 1.00 1.00

6.5 Evaluation of η for FENDL-3.0 Nuclides

Though the CLITE model provides a survey of materials important to FES analysis, it is not

comprehensive. For this reason, the analysis performed in Section 6.3, where η was calculated

over a sweep of 30 irradiation and decay times from 100 s and 109 s (∼ 31.7 years), was

repeated for all 180 nuclides in the FENDL-3.0 nuclear data library. This was done using the

shield neutron spectrum from Figure 6.3. This spectrum was chosen because most nuclides

are unlikely to be exposed to a first wall spectrum, and the vacuum vessel spectrum is not



89

intense enough to provide significant SNILB criteria violations (as seen in Table 6.3).

The minimum and maximum η values for this sweep of irradiation and decay times were

ascertained for each nuclide. For brevity, only nuclides with minimum or maximum η values

that were 30% from 1 are shown in Table 6.11. Some nuclides appear in this table twice

because they have both minimums less than 0.7 and maximums greater than 1.3. As discussed

in Section 6.3, more severe SNILB violations generally occur at long irradiation and decay

times. For this reason, the minimum and maximum η values for a sweep of shorter irradiation

and decay times are also tabulated in Table 6.12. For this table, the sweep entailed 15

irradiation and decay times between 1 s and 34.6 h.

From these tables, it is apparent that only a small number of nuclides violate the SNILB

criteria in a manner that results in a significant overestimation of the photon emission density

(“significant”, here meaning η > 1.3). However, several of these nuclides (e.g., 23Na, 181Ta,

isotopes of W) are relevant to FES analysis. A large fraction of nuclides violate the SNILB

criteria in a manner that results in an η significantly less than 1; notably isotopes of Cr, Mn,

Fe, and which are likely to be present in structural material. Many of these nuclides have η

values that are 3–5 orders of magnitude less than 1, whereas no nuclide was observed to have

an η greater than 2 orders of magnitude larger than 1. This indicates that underestimation

is both more common and more severe, probably due to threshold reactions. Of the nuclides

with η much less than 1, 183W and 186W are of the greatest concern, as they are major

isotopes found in elemental tungsten.

These results show that although the bulk materials used in the CLITE model generally

only produce minor SNILB violations, this is not true of all nuclides. Because of this, in

combination with the large number of dimensions that affect η, it is recommended that η

or ηI be calculated for any bulk material prior to using the GT-CADIS method. This will

predict if the GT-CADIS method will be effective, or if SNILB-violation methods must be

employed.
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Table 6.11: Minimum and maximum η values for all nuclides in the FENDL-3.0 data library
for a sweep of irradiation and decay times ranging from 100 s to 109 s (∼ 31.7 years).

η violation nuclides
0 < η < 10−5 36S, 38Ar, 40K, 62Ni, 71Ga, 81Br, 155Gd, 156Gd, 157Gd, 158Gd, 160Gd,

162Er, 166Er, 167Er, 176Lu, 176Hf, 177Hf, 182W, 186W
10−5 < η < 10−4 40Ar, 46Ca, 48Ti, 51V, 64Ni, 65Cu, 96Zr, 96Mo, 130Ba, 139La, 183W,

196Pt
10−4 < η < 10−3 54Cr, 68Zn, 74Ge, 100Mo, 138Ba, 168Er, 179Hf, 187Re
10−3 < η < 0.01 33S, 55Mn, 79Br, 106Cd, 113Cd, 115Sn, 127I, 180Hf, 184W, 190Pt, 232Th,

235U, 238U
0.01 < η < 0.1 29Si, 39K, 57Fe, 58Fe, 69Ga, 97Mo, 107Ag, 111Cd, 112Cd, 119Sn, 122Sn,

121Sb, 123Sb, 137Ba, 138La, 152Gd, 154Gd, 164Er, 175Lu, 174Hf, 178Hf,
204Pb

0.1 < η < 0.7 34S, 41K, 43Ca, 44Ca, 50V, 67Zn, 73Ge, 76Ge, 93Nb, 94Mo, 98Mo, 114Cd,
117Sn, 120Sn, 135Ba, 140Ce, 170Er, 181Ta, 180W, 195Pt, 207Pb, 209Bi

1.3 < η < 10 23Na, 103Rh, 107Ag, 109Ag, 108Cd, 110Cd, 112Sn, 133Cs, 138La, 152Gd,
154Gd, 162Er, 175Lu, 176Lu, 174Hf, 179Hf, 181Ta, 180W, 182W, 185Re,
187Re, 192Pt, 197Au, 238U

10 < η < 100 112Cd, 113Cd, 114Cd, 116Sn, 178Hf
100 < η <∞ −

Table 6.12: Minimum and maximum η values for all nuclides in the FENDL-3.0 data library
for a sweep of 30 irradiation and decay times ranging from 1 s to 32.6 d.

η violation nuclides
0 < η < 10−5 −
10−5η < 10−4 −
10−4 < η < 10−3 −
10−3 < η < 0.01 113Cd, 167Er, 186W
0.01 < η < 0.1 138La, 157Gd, 158Gd, 164Er, 177Hf, 183W, 235U
0.1 < η < 0.7 170Er, 175Lu, 190Pt
1.3 < η < 10 −
10 < η < 100 −
100 < η <∞ −
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6.6 Conclusion

In this chapter, the extent to which the SNILB criteria are met was assessed for typical

materials, spectra, and irradiation scenarios encountered in FES analysis. It was found

that in general, the SNILB criteria are reasonably met for most of the cases tested and

SNILB violations are more severe with high fluence. The reaction pathways that resulted

in significant SNILB violations were determined and these pathways were consistent with

theoretical expectations. Namely, the mechanisms for the overestimation and underestimation

of the photon emission density via superposition were consistent with those presented in

Sections 4.1.4.1 and 4.1.4.2, respectively. It was confirmed through the calculation of ηI that

these minor SNILB violations often occur for pathways that produce important photons for

SDR analysis. Finally it was found that a large number of nuclides not considered in the

analysis of CLITE materials can significantly violate the SNILB criteria. It was found that

violations for which η is much less than one are both more common and several orders of

magnitude more severe.

The fact that the SNILB criteria are generally met for the ITER CLITE materials with

typical spectra and irradiation scenarios indicates that the SNILB solution for T should

accurately represent the transmutation process. This suggests that T (as calculated via

groupwise irradiations) could be used with the D1S method described Section 2.4.1. It is

much more important that the SNILB criteria are met in order to use groupwise irradiations

to calculate T for the D1S method because T will affect the final answer for the SDR. In

contrast, using the GT-CADIS T for VR purposes will not affect the SDR, provided that the

estimate of T is not so poor that there is significant undersampling of important phase space

regions in the MC neutron transport calculation.

Though the results presented in this chapter are promising, due to the large number of

dimensions that affect the SNILB criteria (i.e., nuclide composition, neutron spectrum, and

irradiation scenario), it is recommended that η or ηI be calculated for materials prior to

using the GT-CADIS method. The calculation of η and ηI are no more computationally
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expensive than the calculation of T , so this additional step do not impose a significant burden.

This step will be carried out in the ensuing chapters, which will demonstrate the GT-CADIS

method and SNILB-violation methods.
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Chapter 7

Performance of the GT-CADIS Method

For problems where the SNILB criteria are met, the GT-CADIS method yields the SNILB

solution for T , thereby producing VR parameters that optimize neutron transport with respect

to a photon SDR detector. In this chapter, this is demonstrated with a simple problem. In

the problem, a 13.8–14.2 MeV neutron source irradiates a stainless steel block with an air

cavity inside. The SDR is then measured in a detector within the cavity. The material and

irradiation scenario are chosen so that η is close to 1 for a range of neutron spectra/intensities.

Neutron VR parameters were generated using the GT-CADIS and FW-CADIS method.

MC neutron transport was carried out in analog, with GT-CADIS weight windows and source

biasing, and with FW-CADIS weight windows and source biasing. Here, analog denotes

MC transport with no VR except implicit capture. For each of the 3 methods, MC neutron

transport was done with 9 different computer processor times, in order to get neutron flux

distributions over a range of convergence extents. For each of the 9 processor times, 10

trials were conducted, and the SDR was calculated for each trial. This was done by first

performing an activation calculation for each trial. The resulting photon emission density

distribution for each trial was then combined with the adjoint photon flux distribution to

calculate the SDR for each trial via Equation 2.8. This allowed for the standard deviation in

the SDR to be calculated as a function of neutron transport processor time for each of the

three methods. It is shown that GT-CADIS weight windows and source biasing parameters

yield faster convergence rates than both FW-CADIS and analog neutron transport.



94

Table 7.1: Material composition for SS316L M106, used as the primary material in the
demonstration problem.

element mass % element mass %
Fe 64.0135 Ta 0.1500
Cr 17.5000 N 0.1100
Ni 11.5000 Nb 0.1000

Mo 2.2500 Ti 0.1000
Mn 2.0000 C 0.0300
Cu 1.0000 P 0.0300
Si 1.0000 S 0.0150

Co 0.2000 B 0.0018

7.1 Problem Description

For this problem, the geometry (shown in Figure 7.1) is a rectangular prism that is 240 cm

× 240 cm × 350 cm. In the z-direction, the first 10 cm are occupied by air. From z = 10

to z = 350 is a block of SS316L M106 (a material discussed in Section 6.2). This material

composition is listed in Table 7.1. Within the SS316L M106 block, there is an air duct that

is U-shaped in the y-z plane, centered around z-axis at x = 0, y = 0, with the prongs facing

in the negative z-direction. The prongs extend from z = 150 to z = 310 and have a cross

section in the x-y plane that is 20 cm × 20 cm. In the y-direction, the prongs are spaced

so that the bottom of the bottom prong is at y = −80 and the top of the top prong is at

y = 80. The connector between the prongs (which forms the “U”) is also 20 cm × 20 cm in

cross section. A CAD model of this geometry was created in CUBIT.

The neutron source occupies the entire x-y plane from z = 0 to z = 5. The source only

has intensity in the 13.8 – 14.2 MeV energy group. The source intensity varies as a function

of y-position: it linearly increases by an order of magnitude from y = −120 to y = 120. The

neutron source is normalized such that the total neutron source intensity is 1.25·1019 n/s.

The goal of the problem is to obtain the SDR in a detector in the duct after a single-pulse

irradiation scenario consisting of 105 s (27.78 h) of irradiation and 105 s (27.78 h) of decay.

The detector is a 5 cm radius sphere with ICRP-74 flux-to-dose-rate conversion factors. The
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Figure 7.1: CAD geometry representation used for both MC and deterministic transport.
The dosimeter was removed for both MC and deterministic neutron transport. Green: air;
blue: SS316L M106; purple: dosimeter.

detector is located in the vertical part of the duct (i.e., the portion parallel to the y-axis)

at y = 35. The material composition of the detector was chosen to be the same as the

dosimeter in the FNG ITER benchmark problem (1H: 52.34 a%, 12C: 47.66 a%)[36]. The

detector location can be seen in Figure 7.1. Since the detector is located near the top of the

duct and the neutron source is most intense at the bottom of the geometry, the pathways of

important neutrons are not known a priori, which makes this problem a good candidate for

the application of automated VR.

For this problem, DAG-MCNP5 with FENDL-2.1 nuclear data was used for all MC

transport. All deterministic transport was carried out with PARTISN using P5S16, FENDL-

2.1 nuclear data, and the VITAMIN-J group structure (175 neutron groups, 42 photon groups).

Activation was done with ALARA with FENDL/A-3.0 nuclear data.



96

Figure 7.2: PDF of the neutron source distribution for the 13.8–14.2 MeV energy group. All
other neutron groups have zero source intensity.

7.2 Generating GT-CADIS Weight Windows and

Biased Source

In order to generate GT-CADIS weight windows and a biased source the following steps were

carried out:

1. Deterministic adjoint photon transport,

2. Generation of the GT-CADIS adjoint neutron source,

3. Deterministic adjoint neutron transport,

4. Conversion of adjoint neutron fluxes to weight windows and a biased source.

These steps were carried out using the capabilities described in Chapter 5. For adjoint

photon transport a PARTISN input file was created using the spherical detector as an isotropic

adjoint source. A 42-group discretization of ICRP-74 flux-to-dose-rate conversion factors was

used as the adjoint source spectrum, as shown in Figure 6.14. For adjoint photon transport —

and the rest of this problem — a 48 × 48 × 70 mesh was used, resulting in 161,280 mesh

volume elements, each 5 cm × 5 cm × 5 cm. The adjoint photon flux is shown in Figure 7.3.

Figure 7.3(a) shows that the photon importance in this energy group decreases by 2 orders

of magnitude as it penetrates ∼20 cm into the SS316L M106. The importance of the prongs

of the duct is much greater than the surrounding material, indicating the importance of
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(a) Spatial distribution, x = 0, 0.8 –1.0 MeV
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(b) Energy spectrum along the mesh row in Figure
7.4

Figure 7.3: GT-CADIS adjoint photon flux distribution.

streaming. The importance in the top prong is approximately 2 orders of magnitude larger

than the bottom prong due to the position of the detector. Figure 7.3(b) shows how the

adjoint photon spectra changes as a function of position. The abscissa of this plot represents

the z position with the mesh row shown in Figure 7.4. This plot shows that the importance

of low-energy photons drops off even closer to the detector than the 0.8 –1.0 MeV photons

shown in Figure 7.3(a). This is due to both the reduced intensity of the adjoint photon source

(i.e., the ICRP-74 flux-to-dose-rate conversion factors) for low energies and also the smaller

mean free paths of low-energy photons.

Once the adjoint photon fluxes were obtained, an adjoint neutron source distribution was

calculated using Equation 4.1. This equation requires T for each material in the problem. In

Figure 6.12 is it shown that for SS316 M106 with an irradiation time of 105 s and a decay
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z = 0

z = 350

Figure 7.4: Mesh row selected for analyzing neutron and photon energy spectra as a function
of z position.

time of 105 s, η is near 1.0 for the characteristic spectra for Figure 6.3. Plots of η for air were

also created and no nontrivial deviation from 1.0 was observed for any of the characteristic

spectra. Since η ∼ 1 for both materials at the irradiation and decay scenario of interest, as

long as the neutron spectra in this problem is less intense than the characteristic first wall

spectrum in Figure 6.3, the SNILB criteria will be met. A forward neutron flux distribution

is shown in Figure 7.5. This figure shows that this is indeed the case for majority of the

geometry. On the source side of the geometry, where the neutron flux is most intense, minor

SNILB violations may be present, but due to the extremely low adjoint photon flux in this

region, this is unlikely to have any measurable impact on the performance of the resulting

VR parameters.

T was calculated using the GT-CADIS method for SS316L M106 and air using the

capabilities described in Section 5.3. This was done with 1.75 · 1014 cm−2 s−1 fluxes within

each neutron energy group individually for the 105 s irradiation and 105 s decay scenario.

The choice of 1.75 · 1014 cm−2 s−1 is not unique; as shown in Equation 3.28, T is independent

of the neutron flux magnitude when the SNILB are met. In other words, any flux magnitude

could be used, provided it is not so large that the SNILB criteria are violated. The choice of

1.75 · 1412 cm−2 s−1 is large enough that important reaction channels will be populated, but

still within the range of the characteristic spectra in Figure 6.3 (all of which result in η ≈ 1
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(a) Spatial distribution, x = 0, 12.5 – 12.8 MeV
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(b) Energy spectrum along the mesh row in Figure 7.4

Figure 7.5: Forward neutron flux distribution.

in this case).

The calculated T for SS316L M106 is shown in Figure 7.6. In addition to being necessary

for GT-CADIS, this plot of T has a useful physical interpretation. A unit flux of neutrons in

neutron energy group g ( 1
cm2·s) on the x-axis of this plot should result in a photon emission

density of qp,h cm−3 s−1, on the y-axis of the plot after an 105 s irradiation and 105 s decay.

The value of qp,h is indicted by the color bar. This interpretation is only valid when the

SNILB criteria are met.

The shape of the plot of T in Figure 7.6 indicates that for SS316L M106, neutrons of every

energy group can result in photon emissions and that a wide range of photon energies are

represented. The horizontal patterns on the plot come from the fact that photons are emitted

from activation products in discrete lines. The vertical line patterns reflect the neutron
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Figure 7.6: T for SS316L M106 with 105 s of irradiation and 105 s of decay.

energies that have high reaction cross sections for nuclides within SS136L M106. The T for

air was also calculated, and found to be 0 for all neutron/photon energy group combinations;

air does not produce any photons with the irradiation and decay scenario of interest.

Using the aforementioned method, the GT-CADIS adjoint neutron source distribution was

obtained. A plot of the adjoint neutron source distribution for the 12.5 – 12.8 MeV energy

group is shown in Figure 7.7(a). As expected, the shape of the adjoint neutron source is

similar to the adjoint photon flux Figure 7.3(a) with the notable exception that the intensity

is zero within the duct, as this volume contains air for which Tg,h = 0 for all g and h. The

spectral distribution shown in Figure 7.7(b) shows that the shape of T is carried over to the

adjoint neutron source. For example, the elevated T at a neutron energy of ∼4 eV as seen in

Figure 7.6 dramatically increases the adjoint neutron source at ∼4 eV.

Adjoint neutron transport was then done using this adjoint neutron source. The resulting

adjoint neutron flux distribution for the 12.5 – 12.8 MeV energy group is shown in Figure

7.8(a). This plot represents the importance of neutrons to the photon SDR. The elevated

adjoint neutron flux above a neutron energy of ∼4 eV seen in Figure 7.8(b) comes from the

elevated adjoint neutron source intensity at ∼4 eV, bearing in mind that for adjoint particles,

scattering is transposed so particles primarily scatter up in energy. The adjoint neutron flux
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(a) Spatial distribution, x = 0, 12.5 – 12.8 MeV
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(b) Energy spectrum along the mesh row in Figure 7.4

Figure 7.7: The adjoint neutron source distribution calculated via the GT-CADIS method.

distribution is then used to calculate the weight window distribution and the biased source

distribution using Equations 2.17 and 2.18 respectively.

The neutron weight window distribution for the 12.5 – 12.8 MeV energy group is shown in

Figure 7.9(a) with the spectral distribution shown in Figure 7.9(b). As expected, the shape

of these plots mirrors those of Figure 7.8. The biased source density distribution for the

13.8 – 14.2 MeV energy group (the only neutron group with nonzero intensity) is shown in

Figure 7.10. This figure, which has a linear color scale, shows that a large amount of the

area covered by the source is important, concentrated around the area that lines up with the

top duct. This suggests that particles born anywhere have a nontrivial likelihood of traveling

(likely scattering) into an important region of phase space.
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(a) Spatial distribution, x = 0, 12.5–12.8 MeV
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(b) Energy spectrum along the mesh row in Figure
7.4

Figure 7.8: The adjoint neutron flux distribution resulting from deterministic adjoint neutron
transport using the GT-CADIS adjoint neutron source.

The adjoint neutron flux shown in Figure 7.8, combined with the forward neutron flux

shown in Figure 7.5 enable the calculation of the neutron contributon flux as expressed

in Equation 2.9. This quantity represents the paths that neutrons take in order to cause

activation that produces important photons. This interpretation is only valid when the

SNILB criteria are met because T is implicitly used to represent the activation process. The

spatial distribution of the total contribution flux (i.e., the summation over all energy groups)

is shown in Figure 7.11. In this figure, a threshold is applied such that only contribution

fluxes within two orders of magnitude of the maximum contributon flux are shown. This

figure shows that the dominant pathway for contributing particles is particle birth near the

upper center of the source region, followed by scattering into the upper duct. This pathway is
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(a) Spatial distribution, x = 0, 12.5–12.8 MeV
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(b) Energy spectrum along the mesh row in Figure
7.4

Figure 7.9: Neutron weight window distribution calculated via the GT-CADIS method.

Figure 7.10: Biased neutron source as calculated with the GT-CADIS method for the 13.8 –
14.2 MeV energy group.
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(a) Full distribution. (b) Clip, x = 0.

Figure 7.11: Total (over all energy groups) neutron contributon flux distribution. A threshold
has been applied so that any values less than 1.5 · 10−11 Sv/(cm2 s) (the minimum on the
color scale) are not shown.

about an order of magnitude more likely than the corresponding pathway through the lower

duct.

The energy spectrum of the contributon flux in shown in Figure 7.12. This figure shows

how neutrons downscatter from the 13.8 – 14.2 MeV energy group to the dominant scoring

energies in the 10−4–10−1 MeV energy range. The contributon intensity is lower at z = 225 cm

than at z = 150 cm or z = 300 cm. This is because the mesh row used for this figure (shown

in Figure 7.4) is near the upper duct where the contributon flux is highest due to particle

streaming. Particles that pass through the mesh row at z = 150 cm may still scatter into the

upper duct and particles that reach z = 300 cm on the mesh row may have scattered out of

the duct. However, particles that pass through mesh row at z = 225 cm on average cover less

distance in the duct, so the contributon flux is lower.
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Figure 7.12: Contributon flux energy spectra along the mesh row in Figure 7.4.

7.3 Generating FW-CADIS Weight Windows and

Biased Source

VR parameters were also generated using the FW-CADIS method, using the same 48 ×

48 × 70 Cartesian mesh used for GT-CADIS. An FW-CADIS adjoint neutron source was

calculated using the forward flux from Figure 7.5 and Equation 2.20. Equation 2.20 defines

an adjoint source that provides equal weighting to all regions of phase space. The adjoint

neutron source for the 12.5–12.8 MeV energy group is shown in Figure 7.13(a).

The shape of the spatial distribution in Figure 7.13(a) can be compared directly to the

shape of the adjoint neutron flux distribution calculated via the GT-CADIS method as shown

in Figure 7.7(a); for both plots the color scale spans 8 orders of magnitude. In contrast to

the GT-CADIS distribution where the most intense adjoint neutron source surrounds the

detector, in the FW-CADIS distribution the regions of highest adjoint neutron source are

regions of lowest forward flux: the back portions of the geometry and the region between the

prongs of the duct. In energy space, the FW-CADIS method assigns the most intense adjoint

neutron source to the highest and lowest neutron energy groups in the back of the geometry

seen in Figure 7.13(b), which differs greatly from the GT-CADIS distribution in Figure 7.7(b),

where all energy groups are nearly equally represented in the region surrounding the detector.
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(a) Spatial distribution, x = 0, 12.5 –12.8 MeV
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(b) Energy spectrum along the mesh row in Figure
7.4

Figure 7.13: Adjoint neutron source distribution calculated via the FW-CADIS method.

Using the adjoint neutron source in Figure 7.13 adjoint neutron transport was carried out.

The resulting neutron flux distribution is shown in Figure 7.14. From this adjoint neutron

flux distribution weight windows and a biased source were generated, as shown in Figures

7.15 and 7.16 respectively. As expected the shape of the weight window distribution both

spatially and spectrally is the inverse of the adjoint neutron flux distribution. The biased

source has increased source density in the regions aligning with the top and bottom duct

prongs. Unlike the GT-CADIS biased source distribution, in this distribution the biased

source density is higher in the region aligned with the bottom prong than the region aligned

with the top prong. The weight windows produced from the FW-CADIS will strongly bias

neutrons toward the back portion of the geometry. Though these weight windows are not

expected to be optimal, they are expected to improve the efficiency of neutron transport
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(a) Spatial distribution, x = 0, 12.5 – 12.8 MeV
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(b) Energy spectrum along the mesh row in Figure
7.4

Figure 7.14: Adjoint neutron flux distribution using the adjoint neutron source shown in
Figure 7.13.

relative to analog neutron transport.
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(a) Spatial distribution, x = 0, 12.5 – 12.8 MeV
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(b) Energy spectrum along the mesh row in Figure
7.4

Figure 7.15: Neutron weight window distribution calculated via the FW-CADIS method.

Figure 7.16: Biased neutron source as calculated with the FW-CADIS method for the 13.8 –
14.2 MeV energy group.
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7.4 Neutron Transport and R2S

In order to assess the efficiency of neutron transport with GT-CADIS and FW-CADIS VR

parameters and in analog, neutron transport was done over a range of processor times. Nine

processor times were chosen, approximately logarithmically spaced between 101 min and

105 min. For each processor time, 10 neutron transport simulations were carried out for each

of the three methods, each using different random number seeds to give statically independent

results. For each of the resulting neutron flux distributions, an R2S calculation was done

in order to obtain the SDR. This allowed for the relative error of the SDR as a function of

processor time to be ascertained for each method, allowing for the calculation of the standard

MC FOM.

All neutron transport was done on identical hardware with identical run configuration.

Each trial was runs on 5 computer cluster nodes with 20 cores per node and 100 MPI

processes. Each node was an Intel® Xeon® E5-2670 v2 CPU with a clock speed of 2.50 GHz

and 128 GB of RAM. Each trial was run by specifying a number of particle (NPS) termination

criterion in DAG-MCNP5 rather than a processor time (CTME) termination criterion to

avoid complications with rendezvousing. For each processor time the required NPS was

found via trial and error. Since the NPS was held constant for each trial within each target

processor time, minor variations for the actual processor time required by each trial were

observed. For each trial, the MCNP5 PRDMP card was used to limit simulations to a single

rendezvous at the end of the run in order to mitigate load balancing effects.

Once neutron flux distributions were obtained for each of the 270 trials (10 trials × 9

processor times × 3 transport methods), PyNE R2S was used to generate ALARA input for

each trial. ALARA was then run for the chosen irradiation and decay scenario yielding 270

photon source distributions. If MC photon transport were done for each of these distributions,

the resulting SDRs would have statistical error from photon transport. In order to avoid

this, the SDR was calculated for each of these distributions via Equation 2.8, using the

adjoint photon flux from Figure 7.3 (which used the spherical detector as the adjoint source).
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The resulting SDRs only have error from the MC neutron transport step and systematic

discretization error from deterministic adjoint photon transport. Since the same deterministic

adjoint photon flux is used for all trials, this latter component will not contribute to differences

in convergence rates for the three methods.

7.5 Results

Neutron transport relative error distributions for each of the three methods for a subset of

the processor times are shown in Figure 7.17. Only one of the ten trials for each processor

time are represented in this figure. With analog neutron transport, the region where there are

tally scores slowly propagates forward with increased processor time. With processor times

less than ∼1,000 minutes most of the mesh volume elements in the back of the geometry do

not have a single tally score. This undersampling is expected to result in an underestimation

of the SDR. In contrast, neutron transport using both FW-CADIS and GT-CADIS results in

a tally scores in the back of the geometry with the first processor time. Using the GT-CADIS

method, the relative error in the upper prong of the duct appears to decrease at a faster rate

than the FW-CADIS method, as expected. Likewise, the FW-CADIS method results in low

relative error throughout the entire geometry, whereas with the GT-CADIS method the back

corners of the geometry have no tally scores even at the longest processor time.

Photon SDR results for each of the 270 trials are shown in Figure 7.18. The average

SDRs for each of the 9 processor times are shown in Figure 7.19. In this latter plot, error

bars represent the standard deviation in the estimated SDR from the 10 trials and also the

standard deviation in the processor time from each of the 10 trials. With analog neutron

transport, the SDR is underestimated by many trials at short processor times, which is

consistent with the lack of tally scores in the back of the geometry as seen in Figure 7.17. For

some of the trials, the SDR is greatly overestimated (off of the plot) due to low-probability

streaming events that cause overestimations of the neutron flux in the back of the geometry,
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neutron trans. analog FW-CADIS GT-CADIS
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(min)

∼ 10

∼ 100
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Figure 7.17: Neutron transport relative error distribution for analog, FW-CADIS, and GT-
CADIS neutron transport. Each plot shows a clip on the y-z plane at x = 0. The wireframe
geometry outline is not clipped.
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yielding vary large standard deviations. For long processor times, the SDR estimates begin

to converge.

For transport with FW-CADIS and GT-CADIS, results are within one standard deviation

of the converged result for all processor times, suggesting that the effect of undersampling

with short processor times is limited. The standard deviation of the GT-CADIS results is

less than the standard deviation of the FW-CADIS results at all processor times, indicating

that the GT-CADIS method is more effective.

To further quantify the efficacy of the GT-CADIS method the FOM was calculated at

each processor time using Equation 2.13, as shown in Figure 7.20. The uncertainty in the

processor time was propagated in order to obtain an error estimate for the FOM. The FOM

should converge upon a constant value for a given method within a given simulation. For

analog transport, it appears that the FOM is converging, however it is unlikely that is fully

converged. Even with a processor time of 100,000 min, the relative error in the total neutron

flux is still high, as seen in Figure 7.17. This suggests that many of the 175 neutron energy

groups may not have a single score. This undersampling skews the estimate of FOM. As a

result, the representative estimate of the FOM was chosen to be the average of the final three

processor times and found to be 2.6± 0.8 · 10−3 min−1.

For GT-CADIS and FW-CADIS, the FOM remains relatively constant across all processor

times. After the 100 min processor time, tally scores were observed in all important regions

of the problem. For this reason the representative FOM for GT-CADIS and FW-CADIS was

chosen to be average of the FOM values for the processor times between 100–100,000 min.

This yields FOMs of 200± 100 min−1 and 1.5± 0.7 min−1 for GT-CADIS and FW-CADIS

respectively. Using these calculated FOMs, the speedup (the ratio of FOMs) was also

calculated. The GT-CADIS method yields a speedup of 9± 5 · 104 compared to analog and

200± 100 compared to FW-CADIS.
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Figure 7.18: Photon SDR results from neutron transport over a range of computer processor
times.
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Figure 7.19: Average of the SDR results from Figure 7.18. Error bars show the standard
deviation of the SDR and neutron transport processor time.
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Figure 7.20: FOM as a function of neutron transport processor time.

7.6 Conclusion

In this chapter a simple problem where the SNILB criteria are met was constructed in order

to quantify the performance of the GT-CADIS method relative to FW-CADIS and analog

neutron transport. The shapes of the neutron weight windows and biased source distributions

produced by the GT-CADIS method are consistent with expectations both in space and

in energy. These VR parameters result in a much faster convergence of the neutron flux

in important regions relative to FW-CADIS, as indicated by analysis of the relative error

distributions as a function of processor time. The large speedups resulting from the use of

the GT-CADIS method — 9 ± 5 ·104 relative to analog transport and 200 ± 100 relative

to FW-CADIS — indicate that the required computational resources for SDR analysis are

drastically reduced by using the GT-CADIS method. This is a promising result, considering

the evidence set forth in Chapter 6 that suggests that the SNILB criteria are generally met

for typical FES scenarios, indicating a broad applicability of GT-CADIS. The GT-CADIS

method will be demonstrated for one such FES scenario in Chapter 9.
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Chapter 8

Performance of SNILB-Violation Methods

As discussed in Section 4.2, the efficacy the GT-CADIS method is not guaranteed when

the SNILB criteria are violated. This can be predicted by calculating η and/or ηI for the

materials, spectra, and irradiation scenarios of interest. In this chapter a problem is contrived

where a significant portion of the SDR comes from a material for which η and ηI are extremely

small, as a result of dominant photons being produced by a multiple-neutron-interaction

pathway. This form of SNILB violation was chosen because in Chapter 6 it was shown that

this mechanism can result in more severe SNILB violations. For the chosen problem, weight

windows and biased sources are first produced via the GT-, GTS-, GTB-, and GTSB-CADIS

methods. As in Chapter 7, neutron transport is carried out over a range of computer processor

times using each set of VR parameters. For each trial, the SDR is calculated using the same

procedure as in Chapter 7. The uncertainty in the SDR as a function of computer processor

time is assessed in order to determine the efficacy of each method.

8.1 Problem Description

The geometry (shown in Figure 8.1) consists of a cube occupying the region -122.5 cm to

122.5 cm in x, -122.5 cm to 122.5 cm in y, and 0 cm to 245 cm in z. The first 10 cm in the

z-direction are occupied by air. From z =10 cm to z =245 cm the geometry is a block of

water with several features inside. A T-shaped air duct within the water is aligned parallel

to the z-axis, centered around the origin. The duct has a 15 cm × 15 cm cross section and

extends from 60 cm to 170 cm in z. The "cross" portion of the "T" extends from -7.5 cm to

7.5 cm in x, -32.5 cm to 32.5 cm in y, and 155 cm to 170 cm in z. Three 5 cm × 5 cm ×

5 cm blocks are also inside the water block, centered at the points (0, 100, 162.5), (0, -100,
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Figure 8.1: Geometry used for SNILB-violation methods experimentation.

162.5), and (0, 70, 182.5). The blocks consist of 62Ni with a density of 1 g/cm3, Sn (natural

abundance) with a density of 1 g/cm3, and a photon dosimeter. The dosimeter has the

same composition as used in Chapter 7 and also uses ICRP-74 flux-to-dose-rate conversion

factors. For convenience, the volumes containing 62Ni and Sn are referred to as the “top” and

“bottom” volumes, respectively. The mesh used for this problem is 49×49×49 (117,649 mesh

volume elements) and conforms to all geometry features.

The neutron source for this problem occupies the region from z = 0 cm to z = 5 cm. The

PDF describing this source is given by:

q = 1 + sin

2π

√(
x− 122.5

245

)2

+

(
y− 122.5

245

)2
. (8.1)

The normalized version of this PDF is shown in Figure 8.2. A single-pulse irradiation scenario

was chosen with 108 s (∼ 3.17 y) of irradiation followed by 108 s (∼ 3.17 y) of decay using

a source normalizations of 1023 n/s. With this problem, only activation from 62Ni and

Sn is considered. This problem was chosen because it has important characteristics for

experimentation with SNILB-violation methods, as discussed in the next section.

For this problem, DAG-MCNP5 with FENDL-2.1 nuclear data was used for all MC
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Figure 8.2: Normalized PDF of the neutron source density for SNILB-violation methods
experimentation.

transport. All deterministic transport was carried out with PARTISN using P5S16, FENDL-

2.1 nuclear data, and the VITAMIN-J group structure (175 neutron groups, 42 photon groups).

Activation was done with ALARA with FENDL/A-3.0 nuclear data.

8.2 Problem Characteristics

The problem described in Section 8.1 was designed to have two important characteristics.

First, the SDR resulting from the top and bottom volumes are nearly equal, which means that

neutrons must be directed to both volumes in order to get the correct answer. Second, the

bottom volume meets the SNILB criteria and the top volume violates the SNILB criteria due

to a dominant multiple-neutron-interaction pathway (with η << 1 ). This means that the

GT-CADIS method is not expected to recognize the importance of the top volume, thereby

producing poor VR parameters. The procedure used to verify the properties of this problem

are described in this section.

First, MC neutron transport was conducted in order to obtain a priori knowledge of

the converged neutron flux. This was done using FW-CADIS in order to minimize the

relative error in the top and bottom volume simultaneously; noting that this optimization

is distinct from minimizing the relative error in only important phase space regions — the
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Figure 8.3: Total forward neutron flux at x = 0.

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101

energy (MeV)

107

108

109

1010

1011

1012

1013

n
e
u

tr
o
n

 f
lu

x 
(c

m
−

2
s−

1
)

top

bottom

Figure 8.4: Forward neutron flux within the top and bottom volumes.

goal of GT-CADIS and SNILB-violation methods. This MC neutron transport resulted in

a maximum groupwise relative error of 0.2% in the top volume and 0.21% in the bottom

volume (for energy groups below the source energy), with many energy groups having a

significantly lower relative error. The neutron flux distribution is shown in Figure 8.3 with

the neutron spectra in the top and bottom volumes shown in Figure 8.4. The neutron flux in

these two volumes is nearly identical, which indicates that the effects of self-shielding within

these volumes (which have different cross sections) is minimal.
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Figure 8.5: Adjoint photon flux for the 0.7 – 0.8 MeV energy group at x = 0.
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Figure 8.6: Adjoint photon flux within the top and bottom volumes.

Next, an adjoint photon transport calculation was performed using the detector as the

adjoint source. The adjoint photon flux distribution for the 0.7 – 0.8 MeV energy group is

shown in Figure 8.5. The photon spectrum in the top and bottom volumes is shown in Figure

8.6. The flux in the top volume is approximately three orders of magnitude higher than the

bottom volume.

Using the MC neutron spectra in Figure 8.4, η and ηI were calculated for the top and

bottom volumes. For ηI, two different functions for Ih were used: ICRP-74 flux-to-dose-rate
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conversion factors, and the actual adjoint photon spectra shown in Figure 8.6. Activation

was also done in the top and bottom volumes and the SDR was then calculated using the

discrete form of Equation 2.8:

SDR =
∑
h

φ+
p,hqp,h. (8.2)

These values are summarized in Table 8.1. The SDR resulting from the two volumes are

nearly equal. The SDRs are expected to be the actual converged SDRs because they result

from the converged neutron flux and full transmutation calculations. The η and both ηI

values are extremely small for the top volume and near 1 for the bottom volume, meaning this

problem has the desired characteristics. Further analysis was performed for the activation of

the top volume. It was found that 99.9994% of the SDR comes from 60Co and that 99.15%

of 60Co is produced via the following two mechanisms:

62Ni
(1.0)

(n, α)−−−→ 59Fe
(1.39·10−6)

β−

−→ 59Co
(1.32·10−6)

(n, γ)−−−→ 60Co
(3.24·10−9)

(n, γ)−−−→ 60mCo
(4.06·10−9)

IT−→ 60Co
(4.05·10−9)

(8.3)

where values in parenthesis under nuclides denote number densities with respect to the parent

nuclide. These mechanisms violate the SNILB criteria because each consists of two neutron

interactions: first 62Ni(n, α) 59Fe then either 59Co(n, γ) 60Co or 59Co(n, γ) 60mCo. The cross

sections for these reactions are shown in Figure 8.7. The first reaction is a threshold reaction,

occurring only with fast neutrons. The second reactions are dominated by thermal neutrons.

In other words, both fast and thermal neutrons must be present to produce appreciable

amounts of 60Co. This behavior cannot be captured with single-energy-group irradiations, as

indicted by the low value of η and ηI, and therefore the standard GT-CADIS method is not

expected to be effective for this problem.
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Table 8.1: Problem characteristics. SDRs are calculated via Equation 8.2 using the neutron
flux distribution in Figure 8.3 and the adjoint photon flux distribution in Figure 8.5. The ηI
actual is calculated using the actual photon spectra in Figure 8.5 as Ih in Equation 3.33.

62Ni (top) Sn (bottom)
converged SDR (Sv/s) 9.45 ·10−9 9.19 ·10−9

η 6.69 ·10−6 1.002
ηI ICRP-74 1.98 ·10−5 1.001
ηI actual 6.31 ·10−6 1.002
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Figure 8.7: Cross sections for the neutron interactions shown in Equation 8.3 from FENDL-2.1.

8.3 Generating Weight Windows and Biased Sources

In order to generate weight windows and biased sources, T was calculated for the top volume

with the GT-, GTS-, GTB-, and GTSB-CADIS methods using the computational tools

described in Section 5.3. From the results in Table 8.1 it is clear the SNILB criteria are met

in the bottom volume. For this reason, T was calculated once for the bottom volume using

the GT-CADIS method. This bottom volume T was paired with a T from the top volume

from each of the four methods to calculate adjoint neutron sources. Adjoint neutron sources

were calculated using the adjoint photon flux distribution in Figure 8.5 via Equation 4.1.

Since the converged neutron flux was already obtained (Figure 8.3), one method for assessing

these adjoint neutron sources is by calculating the SDR via the discrete form of Equation 2.6:
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SDR =
∑
g

φn,gq
+
n,g. (8.4)

Comparing these values to the expected SDRs in Table 8.1 is a way of comparing how well T

calculated by each method approximates the transmutation process, as these T determine

the magnitude of the adjoint neutron source. Using adjoint neutron sources from each

method, deterministic transport was carried out and weight windows and biased sources were

calculated from the resulting adjoint neutron fluxes.

8.3.1 GT-CADIS

The GT-CADIS method was used to calculate the T in the top and bottom volumes using

pulses of 107 cm−2 s−1. These quantities are plotted in Figures 8.8 and 8.9, respectively.

Figure 8.8 shows that in the top volume, single-energy-group irradiations using only the

fastest neutron energy groups produce a weak photon emission density. In contrast, Figure

8.9 shows that single-energy-group irradiations result in much greater photon emission density

in all neutron energy groups. The shapes of these T manifest themselves in the resulting

adjoint neutron sources shown in Figure 8.10.

Using these adjoint neutron source spectra, SDRs were calculated via Equation 8.4. The

SDR from the bottom volume is 9.22·10−9 Sv/s: merely 1.003 times the expected value from

Table 8.1; whereas the SDR from the top volume is 5.45·10−14 Sv/s: 5.77·10−6 times the

expected value. These results are consistent with the η and ηI values given in Table 8.1.

Since the adjoint neutron source for the top volume underestimates the SDR, the GT-CADIS

method underestimates the importance of the top volume. The weight windows and biased

sources resulting from these adjoint sources are shown in Figures 8.11 and 8.12, respectively.

As expected, these figures show that neutrons are strongly biased toward the bottom volume

and only weakly biased toward the top volume.
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Figure 8.8: T for the top volume as calculated by the GT-CADIS method.
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Figure 8.9: T for the bottom volume as calculated by the GT-CADIS method.
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Figure 8.10: Adjoint neutron sources produced by the GT-CADIS method.

Figure 8.11: GT-CADIS weight window distribution for the 12.5 – 12.8 MeV energy group at
x = 0.



125

Figure 8.12: GT-CADIS biased source distribution for the 13.8 – 14.2 MeV energy group.

8.3.2 GTS-CADIS

The GTS-CADIS method as described in Section 4.2.1 uses a deterministic neutron transport

calculation in order to obtain the neutron fluxes used to calculate T . For the purpose of

this experiment, the neutron fluxes from MC neutron transport in Figure 8.3 were used.

The T calculated via the GTS-CADIS method for the top volume is shown in Figure 8.13.

This T is much larger in magnitude in the fast neutron region than T from GT-CADIS

shown in Figure 8.8 as a result of the normalization process. The adjoint neutron source

spectrum for the top volume using this T is shown in Figure 8.14. In this figure, an adjoint

neutron source spectrum is also shown using an unnormalized T from GTS-CADIS — that

is, T ′ from Equation 4.20. This figure also shows the GT-CADIS adjoint neutron source

for the bottom volume for reference. Unlike the GT-CADIS adjoint neutron source for the

top volume in Figure 8.10, the GTS-CADIS adjoint neutron sources go to zero for energies

higher than the 13.8 – 14.2 MeV energy group because the forward neutron flux is zero for all

energy groups above the source energy. With the unnormalized adjoint neutron source the

SDR via Equation is 8.4 is a factor of 6.31 ·10−6 of the expected value in Table 8.1. With

normalization, this SDR is equivalent to the expected value.

The weight window distribution for the 12.5 – 12.8 MeV energy group is shown in Figure

8.15 and the biased source for the source energy group (13.8 – 14.2 MeV), is shown in Figure
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Figure 8.13: T for the top volume as calculated by the GTS-CADIS method with and without
normalization.
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Figure 8.14: Adjoint neutron sources produced by the GTS-CADIS method.
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Figure 8.15: GTS-CADIS weight window distribution for the 12.5 – 12.8 MeV energy group
at x = 0.

Figure 8.16: GTS-CADIS biased source distribution for the 13.8 – 14.2 MeV energy group.

8.16. For these high-energy groups, neutrons are biased more strongly toward the top volume.

However, for low-energy groups it was observed that the weight window distribution strongly

biases neutrons away from the top volume. This means that as neutrons downscatter near

the top volume they are likely to be rouletted.
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8.3.3 GTB-CADIS

GTB-CADIS was used to generate T for the top volume using perturbation parameters of

p = 0.5 and p = 1.5. The T for p = 0.5 is shown in Figure 8.17. In both cases, a uniform

flux spectrum with a magnitude of 1010 cm−2 s−1 was used. This magnitude was chosen

because is it similar to the magnitude of the neutron fluxes in the top volume shown in

Figure 8.3. In practice, these neutron fluxes would not be known a priori, so this choice

represents nearly the best case scenario. Unlike with the GT-CADIS and GTS-CADIS

methods, this T has significant intensity for both fast and thermal neutrons. In other words,

the multiple-neutron-interaction pathways are expected to be populated.

The adjoint neutron sources for p = 0.5 and p = 1.5 are shown in Figure 8.18. The shape

of these adjoint neutron sources is similar to the shape of the cross sections in Figure 8.7 as

expected. For energy groups with high adjoint neutron source intensity, the intensity is similar

for p = 0.5 and p = 1.5. This was also observed for p = 0.1 and p = 10, indicating that T

does not seem to be sensitive to p in this case. For energy groups in the epithermal region,

with low adjoint neutron source intensity, differences are observed but these differences are

unlikely to have an impact on the resulting VR parameters. Likewise, for both p = 0.5 and

p = 1.5 the SDR calculated via Equation 8.4 was found to be 2.57·10−9 Sv/s: 0.272 times the

expected result. For this reason p = 0.5 was arbitrarily chosen for VR parameter production.

The resulting weight window and biased source distributions are shown in Figures 8.19 and

8.20, respectively. These VR parameters direct neutrons to both the top and bottom volumes

fairly equally for the high-energy groups shown.
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Figure 8.17: T for the top volume as calculated by the GTB-CADIS method with p = 0.5.
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Figure 8.18: Adjoint neutron sources produced by the GTB-CADIS method.
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Figure 8.19: GTB-CADIS weight window distribution for the 12.5 – 12.8 MeV energy group
at x = 0.

Figure 8.20: GTB-CADIS biased source distribution for the 13.8 – 14.2 MeV energy group.
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8.3.4 GTSB-CADIS

The T produced via the GTSB-CADIS method is shown in Figure 8.21. A p of 0.5 was

used, as was done with the GTB-CADIS method. This T is similar in shape to the GTB-

CADIS T in Figure 8.17. The resulting adjoint neutron source is shown in Figure 8.22. This

figure also shows the adjoint neutron source produced from the unnormalized T (e.g., T ′ in

Equation 4.24). The magnitude of the adjoint neutron source is greater prior to normalization.

Using the unnormalized adjoint neutron source the SDR is overpredicted by a factor of 2.00

via Equation 8.4. The weight windows and biased source distributions resulting from the

normalized adjoint neutron source are shown in Figures 8.23 and 8.24 respectively. For

the high-energy groups shown, GTSB-CADIS biases neutron more strongly toward the top

volume.
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Figure 8.21: T for the top volume as calculated by the GTSB-CADIS method with p = 0.5,
with and without normalization.
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Figure 8.22: Adjoint neutron sources produced by the GTSB-CADIS method.

Figure 8.23: GTSB-CADIS weight window distribution for the 12.5 – 12.8 MeV energy group
at x = 0.
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Figure 8.24: GTSB-CADIS biased source distribution for the 13.8 – 14.2 MeV energy group.

8.3.5 Summary of Methods Chosen for Experimentation

Adjoint neutron source spectra should have a shape that captures the cross sections of

important reactions and a magnitude that captures the total importance (i.e., across all

neutron energy groups) of a mesh volume element. The shapes of the adjoint neutron sources

produced by each of the four methods are shown in Figure 8.25 and can be compared to the

shapes of the cross sections in Figure 8.7. The magnitude of the adjoint neutron sources can

be judged by comparing the SDR calculated by Equation 8.4 for each adjoint neutron source

to the expected SDR. This information is summarized in Table 8.2.

The four methods capture each combination of correct shape and correct magnitude.

With GT-CADIS, the shape of adjoint neutron source does not capture the importance

of thermal neutrons, and does not have the correct magnitude. GTS-CADIS also has an

Table 8.2: SDRs calculated by Equation 8.4 for each adjoint neutron flux distribution. The
fraction of the expected SDR is also shown using the expected SDRs from Table 8.1.

location method SDR (Sv/s) fraction of expected SDR
bottom GT 9.22·10−9 1.003
top GT 1.12·10−13 5.77 ·10−6

top GTS 9.45·10−9 1.000
top GTB 2.57·10−9 0.272
top GTSB 9.45·10−9 1.000
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Figure 8.25: Adjoint neutron sources chosen for experimentation.

incorrect shape, but a correct magnitude. GTB-CADIS gives the correct shape, but with a

incorrect magnitude (in this case approximately 4 times too low), and GTSB-CADIS gives

both the correct shape and correct magnitude. The efficacy of these four methods will be

compared, via the procedure explained in the next section.

8.4 Neutron Transport and R2S

The efficacy of the GT-, GTS-, GTB-, and GTSB-CADIS methods was assessed using a

procedure similar to that used in Chapter 7. For each set of weight windows and biased

sources, MC neutron transport was carried out for five neutron transport processor times,

logarithmically spaced between 101–105 min. For each processor time, 10 trials were conducted.

Each trial used a different random number seed and simulated a fixed number of particles.

Trials were run on 4 computer cluster nodes with 20 cores per node and 80 MPI processes.

Each node was an Intel® Xeon® E5-2670 v2 CPU with a clock speed of 2.50 GHz and 128

GB of RAM.

For the first 2 computer processor times, significant variation in computer processor times
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was observed between trials, likely due to multiprocessing load balancing effects. For trials

that resulted in computer processor times much shorter or longer than expected, the trials

were rerun with different random number seeds. It should be emphasized that this was not

done for the longest 3 computer processor times, for which the most useful information is

garnered.

PyNE R2S was used to generate ALARA input for each trial. Activation was then done

within the top and bottom volumes. Using the resulting photon emission densities, the SDR

was calculated via Equation 2.8 (as was done in was done in Chapter 7), using the adjoint

photon fluxes from Figure 8.6.

8.5 Results

The objective of this experiment was to compare the SDR convergence rates for each of the 4

sets of VR parameters. Total SDR results for each trial are shown in Figure 8.26, with the

dashed line representing the sum of the converged SDRs from the top and bottom volumes

from Table 8.1. The average and standard deviations of these SDRs are shown in Figure 8.27.

In addition, similar plots are shown for the individual SDR contributions from the top and

bottom volumes in Figures 8.28, 8.29, 8.30, and 8.31.

For the bottom volume results shown in Figures 8.30 and 8.31, all methods converge upon

the expected result at a similar rate. However, for the top volume results in Figures 8.28 and

8.29 the SDR results from the GT- and GTS-CADIS methods are extremely low. With these

methods important thermal neutrons are being rouletted in the vicinity of the top volume. In

turn, most thermal neutron energy groups receive no MC scores, so the thermal flux is found

to be zero. This undersampling causes a tremendous underestimation of the reaction rate

for the (n,γ) reactions shown in Equation 8.3 resulting in an underestimation of the SDR.

Since the GT- and GTS-CADIS methods still play a fair game the SDR in the top volume

would converge for a sufficiently-long processor time. However due to the poor estimation of
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the importance of thermal neutrons by these methods this processor time may eclipse that

required for convergence via analog MC neutron transport.

For the GTB- and GTSB-CADIS methods, the performance for the top volume is similar.

Both methods converge upon the expected result at similar rates to the convergence rate

of the bottom volume. This is a promising result because the GTB-CADIS VR parameters

were not created with the exact neutron spectrum, and were shown to have a magnitude

about 4 times less than expected as shown in Table 8.2. This suggests that much of the

benefit of these two methods comes from simply capturing the behavior of multiple neutron

interactions.

Estimating the relative efficacy of these methods is complicated by the appearance of

outliers, which are observed in results from both methods. The cause of one of these outliers

was further investigated. For the GTSB-method, one trial resulted in a significantly higher

SDR from the top volume at the 104 min processor time as seen in Figure 8.28. The neutron

spectra in the top volume from this trial was obtained for the outlier trial and the other 9

points. Figure 8.32 shows a comparison between the outlier neutron spectrum and the average

of the other 9 spectra. The ratio of the two is also shown. The outlier spectrum only differs

from the average for the lowest 2 neutron energy groups, where it is approximately three

times greater. These discrepancies may result from a single or small number of high-weight

thermal neutrons streaming into the top volume. This explanation is consistent with the

fact that outliers are only observed to have higher SDR results than expected. There is

not enough data to determine whether this phenomenon is more likely to occur with VR

parameters produced by either GTB- or GTSB-CADIS. Nonetheless, it is clear that both of

these methods represent a significant improvement over the standard GT-CADIS method for

this scenario.
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Figure 8.26: Total SDRs from the top and bottom volumes for each trial compared to the
converged result from Table 8.1.
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Figure 8.27: Average of total SDRs from the top and bottom volumes compared to the
converged result from Table 8.1.
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Figure 8.28: SDRs from the top volume for each trial compared to the converged result from
Table 8.1.
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Figure 8.29: Average SDRs from the top volume compared to the converged result from Table
8.1.
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Figure 8.30: SDRs from the bottom volume for each trial compared to the converged result
from Table 8.1.
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Figure 8.31: Average SDRs from the bottom volume compared to the converged result from
Table 8.1.
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Figure 8.32: Neutron flux spectra in the top volume from the GTSB-CADIS outlier point
for the 104 min processor time (as seen in Figure 8.26) compared to the average neutron
spectrum of the other 9 points.

8.6 Conclusion

In Chapter 6 it was shown that the SNILB criteria are generally met for typical FES materials,

spectra, and irradiation scenarios. However, some nuclides were found to significantly violate

the SNILB criteria, most severely in cases where important radionuclides are produced by

multiple neutron interactions. This chapter shows that in these special cases SNILB-violation

methods can be used to obtain much better approximations for T than the GT-CADIS

method.

In the problem described in this section a significant portion of the SDR results from a

multiple-neutron-interaction pathway. Adjoint neutron sources produced via the GT- and

GTS-CADIS methods were shown to neglect the importance of thermal neutrons. This
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behavior was shown to be predictable through the calculation of η and ηI. With these

methods, the thermal neutron flux is greatly undersampled in the top volume, resulting in an

underestimation of the SDR. It does not appear that the GTS-CADIS method offers any

additional benefit over the GT-CADIS method in this case.

The GTB- and GTSB-CADIS methods are shown to remedy this issue. Adjoint neutron

sources produced via these methods are shown to capture the shape of the cross sections

for both neutron interactions. With both methods, the SDR contributions from the top

and bottom volumes converge at similar rates. Both methods had outlying trials for which

the SDR was found to be significantly greater than average. Due to the presence of these

outliers, more data would be needed to make definitive statements about the relative efficacy

of these methods. The fact that the GTB-CADIS method seems to perform similarly the

GTSB-CADIS method shows that detailed spectral information may not be required for

the production of VR parameters. In other words, it appears that the shape of the adjoint

neutron source is more important than the magnitude. This is a promising result because the

GTSB-CADIS method requires the calculation of T in each volume element using deterministic

forward neutron fluxes, whereas the GTB-CADIS can produce VR parameters by conducting

irradiations for only pure materials without detailed knowledge of the neutron spectra.
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Chapter 9

Production-Level Demonstration

In Chapters 7 and 8 the GT-CADIS and SNILB-violation methods were shown to be effective

with simple demonstration problems. In this chapter, the GT-CADIS method is applied to a

realistic problem. Unlike in previous chapters a complex geometry that does not conform to

a Cartesian mesh is used, necessitating the mixing of T by volume fraction. A many-pulse

irradiation scenario is used rather than a single irradiation and decay. In addition, photon

dose rates are calculated with MC photon transport, as would be done for typical FES

analysis, noting that in Chapters 7 and 8 deterministic adjoint photon flux distributions were

used to calculate the SDR. For this demonstration, the 1 m version of the PPPL ST-FNSF

was chosen. This small 27 MW (thermal) device has been proposed to further develop fusion

blanket technology, namely tritium breeding and thermal power conversion [16].

9.1 Problem Description

Vertical and horizontal slices of the 1 m FNSF device are shown in Figure 9.1. A simplified

CAD model of this device was obtained. This simplified model consists of only the inner-

most portion of the geometry: everything inside the vacuum vessel. This model features

homogenized breeding zones, blanket modules, center stack, and other components. Though

the device is not exactly symmetrical vertically or radially, an octant of the geometry with

reflective boundaries was chosen for this demonstration, allowing for a finer mesh resolution

to be used. The chosen octant contains the Test Blanket Modules (TBM) labeled in Figure

9.1. The CAD model of the octant is shown in Figure 9.2 and annotated with material

assignments. Homogenized material mixtures are defined in Table 9.1. Figure 9.2 also shows

the location of the photon dose rate detector. This detector is sufficiently far from the
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(a) vertical slice (b) midplane slice

Figure 9.1: Slices through the 1 m ST-FNSF device. The midplane slice shows the Tritium
Breeding Modules (TBM), Neutral Beam Injectors (NBI), and Material Test Modules (MTM).
Both slices are reproduced from Brown et al. [16].
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Figure 9.2: Octant of the 1 m ST-FNSF. Material mixture specifications appear in Table 9.1.
Here ”VV” denotes vacuum vessel and ”SC” denotes superconducting.

reflecting boundaries that asymmetric effects are not expected to be significant.

The plasma neutron source was modeled using the DAGMC plasma source capabilities

[45]. These capabilities allow for the random sampling of the initial positions and energies

of neutrons born from plasma using several confinement modes [46] (noting that particle
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Table 9.2: Parameters used for L-mode plasma neutron source generation.

parameter value
minor radius (m) 0.5875
major radius (m) 1.05
pedestal radius (m) 0.4375
ion density, pedestal (m−3) 1 · 1020

ion density, separatrix (m−3) 3 · 1019

ion density, origin (m−3) 1 · 1020

ion temperature, pedestal (keV) 6.09
ion temperature, separatrix (keV) 0.1
ion temperature, origin (keV) 45.9
ion temperature peaking factor 8.06
ion density peaking factor 1.0
elongation 2.85
triangularity 0.53
Shafranov shift (m) 0.1

birth in plasma is isotropic). In order to employ biased neutron source sampling via the

capabilities described in Section 5.4, a mesh-based representation of the forward neutron

source is required. This was obtained by using the DAGMC plasma source capabilities

to sample 108 particles. This was done using the low-confinement (L) mode with plasma

parameters listed in Table 9.2. The positions and energies of these neutrons were then tallied

on a mesh in the VITAMIN-J 175 energy group format. A nonuniform 62×62×69 mesh

(265,236 mesh volume elements) was used for this purpose and for the rest of this problem.

This mesh was created by hand to conform to important geometry boundaries. By dividing

the number of tallies in each energy group in each mesh volume element by the volume of

each mesh volume element the mesh-based PDF for the source density was obtained. This

PDF was then normalized to 1. The resulting source density for the dominant energy group

(13.8–14.2 MeV) is shown in Figure 9.3. This figure (and the remaining figures in this chapter)

show a slice through the geometry at a 45◦ angle.

The total source intensity of the octant was chosen to be 1.197 ·1018 n/s, which corresponds

to 27 MW of fusion power within the full device. A complex irradiation and decay scenario

was chosen, as shown in Figure 9.4. This scenario consists of approximately 9 years of pulsed



146

Figure 9.3: Neutron source density distribution for the 13.8 – 14.2 MeV energy group.

8 h 16 h 8 h 48 h × 519 + 8 h 16 h 8 h 24 h× 4 + × 4 +

Figure 9.4: Scenario consisting of approximately 9 years of pulsed irradiation, followed by
a 1 day shutdown period. Green represents irradiation intervals and red represents decay
intervals.

irradiation, followed by a 1 day shutdown period, which are relevant time scales for FES

operation and maintenance planning.

For this problem, DAG-MCNP5 with FENDL-2.1 nuclear data was used for all MC

transport. All deterministic transport was carried out with PARTISN using P5S16, FENDL-

2.1 nuclear data, and the VITAMIN-J group structure (175 neutron groups, 42 photon groups).

Activation was done with ALARA with FENDL/A-3.0 nuclear data.

9.2 Generating Neutron Weight Windows and Biased

Source

In order to generate weight windows and a biased source for this problem, the SNILB criteria

were first evaluated for the materials in this problem in order to determine if the GT-CADIS

method could be used or if an SNILB-violation method was required. This was done by

evaluating ηI for each material using the irradiation scenario of interest and the characteristic
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Table 9.3: Values of ηI for the FNSF materials, the spectra from Figure 6.3, and irradiation
and decay scenario from Figure 9.4. ICRP-74 flux-to-dose-rate conversion factors were used
for Ih.

ηI

Material first wall shield vacuum vessel
outboard vv 1.02 1.00 1.00
SS316 1.04 1.00 1.00
SC material 1.03 1.01 1.00
center stack 1.00 1.00 1.00
LiPb 1.02 1.00 1.00
inboard vv 1.02 1.00 1.00
first wall 1.02 0.99 1.00
divertor plate 0.97 1.00 1.00
support structure 1.02 1.00 1.00
outer blanket 1.02 1.00 1.00
inner blanket 1.02 1.00 1.00
water 1.00 1.00 1.00

FES neutron spectra from Figure 6.3. Resulting ηI values are shown in Table 9.3. This table

shows that for all spectra and materials, all ηI are within 4% of 1. This indicates that the

SNILB criteria are valid in this case and the standard GT-CADIS method can be used to

produce optimal VR parameters.

Proceeding with GT-CADIS, VR parameters were generated with a similar procedure as

used in Chapters 7 and 8. A deterministic adjoint photon transport calculation was first done

using the detector shown in Figure 9.2 as the adjoint source with ICRP-74 flux-to-dose-rate

conversion factors defining the adjoint source spectrum. This was done with 4 computer

cluster nodes with 16 MPI processes per node. Each node was an Intel® Xeon® E5-2670 v2

CPU with a clock speed of 2.50 GHz and 128 GB of RAM.

Unlike in previous chapters where each mesh volume element contained exactly one

geometry cell and therefore one material, significant portions of the mesh used for this

problem contained multiple geometry cells, resulting in a large number of unique mixtures.

Due to computer memory limitations, this collection of mixtures was collapsed down into a

small set of approximate mixtures. This was done using a 25% relative tolerance. In other
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Figure 9.5: Adjoint photon flux distribution for the 0.8 – 1.0 MeV energy group.

words, if the volume fractions of the all the materials within two mixtures were within 25%

of each other, these two mixtures were represented by a single mixture. The adjoint photon

flux distribution is shown in Figure 9.5.

Next, T was calculated for all of the materials in the problem for the irradiation scenario

of interest. These T were then mixed by volume fraction in order to obtain a T for each mesh

volume element. This was done using the actual volume fractions within each mesh volume

element — not the approximate volume fractions used for generating PARTISN input. Figure

9.6 shows the Tg,h distribution for the 1.0–1.11 MeV neutron energy group (g) and the 0.8 –

1.0 MeV photon energy group (h). This figure shows that Tg,h for the poloidal field (PF) coil

material is approximately two orders of magnitude greater than any other material for this

particular g and h. The striped patterns in the bottom of the plot are a result of the 45◦

slice through the geometry, which intersects the mesh volume elements diagonally.

The T for each mesh volume element and the adjoint photon flux were used to calculate

the adjoint neutron source distribution shown in Figure 9.7. This figure shows that the most

important spatial regions for neutrons are the areas of the PF coil and structural material in

the immediate vicinity of the detector. For the purpose of comparison, an adjoint neutron

source was also calculated via the FW-CADIS method, shown in Figure 9.8. As expected,

the adjoint source intensity is inversely proportional to the forward flux. Since the detector
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Figure 9.6: Tg,h distribution for the 1.0–1.11 MeV neutron energy group (g) and the 0.8 –
1.0 MeV photon energy group (h).

Figure 9.7: GT-CADIS adjoint neutron source distribution for the 1.0 – 1.11 MeV energy
group.

happens to be in the region of lowest forward flux in this problem, the FW-CADIS method

would likely provide significant speedup over analog. However, unlike the GT-CADIS method,

FW-CADIS has high adjoint source intensity in the region behind the vacuum vessel, which

will result in neutrons wastefully being directed toward this region.

Adjoint neutron transport was then carried out with the same run configuration and

mixture collapsing criterion as adjoint photon transport. The adjoint neutron flux distribution

is shown in Figure 9.9. Using this adjoint neutron flux, neutron weight windows and a

biased source were generated, as shown in Figures 9.10 and 9.11. The adjoint neutron flux
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Figure 9.8: FW-CADIS adjoint neutron source distribution for the 1.0 – 1.11 MeV energy
group.

Figure 9.9: Adjoint neutron flux distribution for the 1.0 – 1.11 MeV energy group.

distribution and resulting weight window distribution show that the importance is nearly

uniform throughout the plasma region. Likewise, the biased neutron source distribution is

nearly identical to the unbiased source distribution shown in Figure 9.3. The weight window

distribution suggests that streaming through the gap below the divertor plate is a more

important pathway than diffusion through first wall and outboard blanket modules.

The contributon flux distribution resulting from the GT-CADIS adjoint neutron flux was

also calculated using Equation 2.9 as seen in Figure 9.12. This plot confirms that neutrons

primarily stream through the divertor region in order to reach import areas of the geometry.
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Figure 9.10: Neutron weight window distribution for the 1.0 – 1.11 MeV energy group.

Figure 9.11: Biased neutron source density distribution for the 13.8 – 14.2 MeV energy group.

Figure 9.12: Total contributon flux distribution across all energy groups.
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9.3 R2S

In to order calculate the SDR, neutron transport was first done using the GT-CADIS weight

windows and biased source. This was done using the same hardware as deterministic transport

but with 8 nodes and 20 MPI tasks per node. A total of 2·109 particles were simulated in 311

days of CPU time.1

The total neutron flux distribution is shown in Figure 9.13 with the relative error

distribution shown in Figure 9.14. The neutron flux distribution shows the total neutron

flux is attenuated by approximately 5 orders of magnitude between the source and detector.

The relative error distribution shows that significantly less processor time is spent simulating

particles in the center stack, outboard breeding zones and deep within the PF coils. A region

of lower relative error is seen outwards of the outer PF coil. This is due to the fact that the

PF coils block streaming high-weight particles that increase the variance in the surrounding

vacuum regions. Relative errors are less than 1% for the most important regions (regions of

high adjoint neutron flux in Figure 9.9).

Using PyNE R2S, ALARA input was generated and ALARA was run for each mesh

Figure 9.13: Total neutron flux distribution.
1During neutron transport an average of 1 in 5,600 particles were lost. Further analysis indicated that

these lost particles were not confined to any single region, indicating significant issues with the CAD geometry.
For FES analysis lost particles are common, and the loss rate must be weighed against the significance of the
calculation. Since neutron flux and relative error distributions are consistent with expectations, this loss rate
was deemed acceptable for the purpose of this demonstration.
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Figure 9.14: Total neutron flux relative error distribution.

volume element. The resulting photon emission density is shown in Figure 9.15. This figure

shows that the first wall has 2–3 orders of magnitude greater photon emission density than

the important regions of the problem (regions of high adjoint photon flux in Figure 9.5). For

this reason, the standard CADIS method was used to generate weight windows and a biased

source for the problem, shown in Figures 9.16 and 9.17 respectively. Since the adjoint photon

flux was already required for GT-CADIS, no additional deterministic transport was required

for this step.

Photon transport was done using these weight windows and a biased source with 1010

particles simulated on the same hardware and configuration as neutron transport. 2 Photon

transport took 48.0 days of CPU time and resulted in a converged SDR of 4.02 ·10−5 Sv/s

with a photon transport relative error of 0.0014. The calculated SDR for this problem is

extremely high: these results indicate that after ∼9 years of operation at full power, a much

longer cooldown time should occur in order to perform any maintenance operations.

2Photon transport resulted in fewer lost particles than neutron transport: only 1 in 2.01 ·105.
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Figure 9.15: Photon emission density distribution for the 0.8–1.0 MeV energy group.

Figure 9.16: Photon weight window distribution for the 0.8 – 1.0 MeV energy group.

Figure 9.17: Biased photon emission density distribution for the 0.8 – 1.0 MeV energy group.
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9.4 Conclusion

This chapter detailed the process of how the GT-CADIS method can be used in practice. A

realistic geometry and irradiation scenario were chosen. The quantity ηI was first evaluated

for each material in the problem using the irradiation scenario of interest and characteristic

FES neutron spectra. This process provided a priori knowledge that the SNILB criteria are

reasonably met for this problem and that the GT-CADIS method would be effective, without

employing any of the SNILB-violation methods. Weight windows and a biased source were

then generated using GT-CADIS. No significant challenges were encountered generating T

using a complex irradiation scenario for each material and mixing T by volume fraction to

obtain T in each mesh volume element. The resulting weight window distribution took on

the expected shape — clearly biasing neutrons toward the important regions of the problem.

The biased source shape indicated that source biasing may not be paramount for this class of

problems. The use of the GT-CADIS method also allowed for the standard CADIS method to

be employed for photon transport without any additional deterministic transport steps. It is

clear that the GT-CADIS method can, and should, be applied to production-level problems,

much like the standard CADIS and FW-CADIS methods which are in wide use today.
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Chapter 10

Conclusion and Future Work

The MS-CADIS method describes a procedure for optimizing MC neutron transport for

SDR analysis. The formulation of the MS-CADIS adjoint neutron source requires T , a

quantity that relates neutron flux to photon emission density. In this work, an approximate

solution for T is developed from first principles. The SNILB criteria delineate when this

solution, the SNILB solution for T , is valid. Important radionuclides must be produced

via single-neutron-interaction pathways that meet a low burnup criteria. The extent to

which the SNILB criteria are met can be quantified through the calculation of η and ηI.

The GT-CADIS method is an implementation of the MS-CADIS method that calculates T

through a series of single-energy-group irradiations. When the SNILB criteria are met, the

GT-CADIS T is equivalent to the SNILB solution. In special cases where the SNILB criteria

are egregiously violated, the GT-CADIS method is not expected to be effective. A suite of

SNILB-violation methods have been proposed for these scenarios. These methods modify

the GT-CADIS method by using either detailed a priori knowledge of forward neutron flux

spectra (GTS-CADIS), irradiations using a background neutron spectrum (GTB-CADIS), or

both (GTSB-CADIS).

In Chapter 6 it was shown that the SNILB criteria are reasonably met for typical FES

materials and neutron spectra, over a range of irradiation scenarios. The SNILB criteria are

egregiously violated for some nuclides and these violations are more severe at high fluence

and via multiple-neutron-interaction pathways. For this reason it is recommended that the

SNILB criteria be evaluated for problems of interest prior to using the GT-CADIS method,

to determine if SNILB-violation methods are necessary.

In Chapter 7 a simple problem where the SNILB criteria are met was generated. The

GT-CADIS method was shown to result in speedups of 200 ± 100 relative to FW-CADIS
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and 9 ± 5 ·104 relative to analog. These speedups indicate that the computational resources

required to obtain SDR results can be drastically reduced by using the GT-CADIS method.

The problem contrived in Chapter 8 violates the SNILB criteria via a dominant multiple-

neutron-interaction pathway. The poor performance of the GT-CADIS method in this

problem was predicted through the calculation of η and ηI. It was shown that in order to

capture the behavior of multiple neutron interactions, irradiations with multiple energy groups

simultaneously are required for the calculation of T . The GTS-CADIS method provided

no additional benefit over GT-CADIS. The GTB- and GTSB-CADIS methods both offered

significant performance improvements over GT-CADIS. The fact that the GTB-CADIS

method performed similarly to GTSB-CADIS is an exciting result because it suggests that

detailed neutron spectra information may not be paramount, even when the SNILB criteria

are violated.

In Chapter 9, the GT-CADIS method was applied to a production-level problem. The

1 m ST-FNSF geometry and a ∼9 year, many-pulse, irradiation scenario were used. In order

to confirm that the GT-CADIS method would be effective for this problem, ηI was first

calculated and found to be within 4% of 1 for all materials. The weight windows automatically

produced by the GT-CADIS method clearly biased neutrons toward importance regions of the

problem. It was also shown that the CADIS method can be used for MC photon transport

without any additional deterministic transport.

This work has also opened up a number of interesting research questions. The GTB-

CADIS method was shown to be effective without detailed knowledge of the neutron spectra

and had similar performance to the GTSB-CADIS method. The relative performance of

these methods could be further explored to see if this result holds for a variety of scenarios.

Since the GTB-CADIS method produces the same T as GT-CADIS when the SNILB criteria

are met, the GTB-CADIS method may be useful as a general purpose method, not only

when the SNILB criteria are violated. Also, this work only considered target-based SDR

problems. Though the application of the MS-CADIS method to global SDR problems has
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been proposed, this has not yet been demonstrated in published work. The success of the

GT-CADIS method motivates this further application. Finally, the fact that the SNILB

criteria are generally met for FES scenarios motivates the use of T calculated via groupwise

irradiations for the D1S method. Since the choice of T in the D1S method affects the final

answer for the SDR, this application requires further research.

From this work it is clear that the MS-CADIS method and specifically the GT-CADIS

implementation are broadly applicable to FES scenarios, will significantly reduce the compu-

tational resources necessary for calculating the SDR, and are ready for immediate use. This

work has furthered the state-of-the-art and also opened up a variety of interesting research

questions for future investigation.
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Appendix A

Bateman Taylor Expansions

In this appendix, it is shown that Equation 3.17, duplicated here:

Ni(t) = N1(0)
i−1∑
k=1

[Pk+1

( Z∑
z=0

(−t)z

z! (dzk − d
z
i )
)

di − dk

i−1∏
l=1,
l 6=k

Pl+1

dl − dk

]
, i > 1 (A.1)

can be reduced to much simpler expressions by truncating the Taylor expansion. When the

Taylor expansion is truncated with Z = i− 1, the result is Equation 3.20, duplicated here:

Ni(t) = N1(0)
ti−1

(i− 1)!

i∏
j=2

Pj, i > 1. (A.2)

When Z = i the result is Equation 3.24, duplicated here:

Ni(t) = N1(0)
ti−1

i!

(
i− t

i∑
j=1

di

) i∏
k=2

Pk, i > 1. (A.3)

To confirm this, a Mathematica® function was first written in order to evaluate Equation A.1

as a function of i and Z. This function is shown here:

BatemanSimp [ i_ ,Z_] := Fu l l S imp l i f y [ Subsc r ip t [N, 1 ] ∗Sum[ Subsc r ip t [P, k

↪→ +1]∗Sum[(− t )^z/z ! ∗ ( Subsc r ip t [ d , k ]^ z − Subsc r ip t [ d , i ]^ z ) ,{ z

↪→ , 0 , Z} ] / ( Subsc r ip t [ d , i ]−Subsc r ip t [ d , k ] ) ∗Product [ I f [ l !=k ,

↪→ Subsc r ip t [P, l +1]/( Subsc r ip t [ d , l ] − Subsc r ip t [ d , k ] ) , 1 ] , { l , 1 , i

↪→ −1}] ,{k , 1 , i −1}] ]

This function was first evaluated for i = [2, 5] with Z = i− 1:
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These results are consistent with Equation A.2. The function was then evaluated for i = [2, 5]

with Z = i:

These results are consistent with Equation A.3.


	List of Tables
	List of Figures
	Abstract
	Introduction
	Background
	Radiation Transport for Fusion Shielding Applications
	The Linear Boltzmann Equation
	The Adjoint Transport Equation
	Deterministic Radiation Transport
	Monte Carlo Radiation Transport

	Monte Carlo Variance Reduction
	Source Biasing and Particle Splitting
	CADIS and FW-CADIS

	Nuclear Inventory Analysis
	Mathematical Model
	Linear Transmutation Chains

	Shutdown Dose Rate Analysis
	Direct 1-Step Method
	Rigorous 2-Step Method

	MS-CADIS

	Solution for the MS-CADIS Adjoint Neutron Source
	Relating Neutron Flux and Photon Emission Density
	Relating Neutron Flux and Nuclide Concentration
	General Case
	Transmutation Approximations
	SNILB Criteria and SNILB Solution

	Evaluating the SNILB Criteria

	GT-CADIS and SNILB-Violation Methods
	GT-CADIS
	Practical Considerations
	GT-CADIS Procedure
	Visualizing T
	SNILB Violations Effect on GT-CADIS Estimates of T
	High Burnup
	Multiple Neutron Interactions


	SNILB-Violation Methods
	GTS-CADIS
	GTB-CADIS
	GTSB-CADIS
	Summary of SNILB-Violation Methods


	Software Implementation
	R2S Workflow
	Deterministic Transport
	T from GT-CADIS and SNILB-Violation Methods
	CADIS

	Evaluation of the SNILB Criteria for FES Scenarios
	Characteristic Spectra
	Characteristic Materials
	Evaluation of  for FES Materials
	Beryllium
	> 1
	< 1

	Concrete
	NiAl Bronze
	Tungsten
	SS316L M106 and M108

	Evaluation of I for FES Materials 
	Evaluation of  for FENDL-3.0 Nuclides
	Conclusion 

	Performance of the GT-CADIS Method 
	Problem Description 
	Generating GT-CADIS Weight Windows and Biased Source 
	Generating FW-CADIS Weight Windows and Biased Source 
	Neutron Transport and R2S 
	Results 
	Conclusion 

	Performance of SNILB-Violation Methods 
	Problem Description 
	Problem Characteristics 
	Generating Weight Windows and Biased Sources 
	GT-CADIS
	GTS-CADIS
	GTB-CADIS
	GTSB-CADIS
	Summary of Methods Chosen for Experimentation

	Neutron Transport and R2S 
	Results 
	Conclusion 

	Production-Level Demonstration 
	Problem Description 
	Generating Neutron Weight Windows and Biased Source 
	R2S 
	Conclusion 

	 Conclusion and Future Work 
	References 
	Bateman Taylor Expansions 

