Biondo et al.

Comparison of nested
geometry treatments
within GPU-based
Monte Carlo neutron
transport simulations
of fission reactors *

“This manuscript has been authored by UT-Battelle,
LLC, under contract DE-AC05-000R22725 with the US
Department of Energy. The United States Government
retains and the publisher, by accepting the article
for publication, acknowledges that the United States
Government retains a nonexclusive, paid-up, irrevocable,
worldwide license to publish or reproduce the published
form of this manuscript, or allow others to do so,
for United States Government purposes. DOE will
provide access to these results of federally sponsored
research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

The International Journal of High Perfor-
mance Computing Applications
XX(X):2-39

©The Author(s) 2023

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

Elliott Biondo, Thomas Evans, Seth Johnson, and Steven

Hamilton

Prepared using sagej.cls

Abstract

Monte Carlo (MC) neutron transport provides detailed estimates of radiological
quantities within fission reactors. This involves tracking individual neutrons through
a computational geometry. CPU-based MC codes use multiple polymorphic tracker
types with different tracking algorithms to exploit the repeated configurations of
reactors, but virtual function calls have high overhead on the GPU. The Shift MC
code was modified to support GPU-based tracking with three strategies: dynamic
polymorphism with virtual functions, static polymorphism, and a single tracker
type with tree-based acceleration. On the Frontier supercomputer these methods
achieve 77.8%, 91.2%, and 83.4%, respectively, of the tracking rate obtained using
a specialized tracker optimized for rectilinear-grid-based reactors. This indicates
that all three methods are suitable for typical reactor problems in which tracking
does not dominate runtime. The flexibility of the single tracker method is highlighted
with a hexagonal-grid microreactor problem, performed without hexagonal-grid-
specific tracking routines, providing a 2.19x speedup over CPU execution.

Keywords
Monte Carlo, radiation transport, GPU computing, nuclear reactor analysis,
computational geometry

1 Introduction

Nuclear reactors account for nearly 20% of electricity production in the United States,
with lifecycle greenhouse gas emissions 17-29x less than coal-fired power plants per
unit of energy generated (Center for Sustainable Systems 2022). These reactors derive
energy from induced nuclear fission, a process in which a free neutron is captured
by a heavy fuel nucleus, causing it to split into multiple lighter nuclei. Each fission
releases heat, as well as additional free neutrons that may induce subsequent fissions,
perpetuating the process. The pressurized water reactor (PWR)—the most common
reactor design worldwide—consists of a core composed of assemblies, each of which

is composed of fuel rods, as shown in Figure 1. Water is pumped through the core to

Oak Ridge National Laboratory, Oak Ridge, TN, USA

Corresponding author:
Elliott Biondo, Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN, 37830, USA.
Email: veb@ornl.gov

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

Biondo et al. 3

pin
assem

fuel rod

coolant

Figure 1. Simplified diagram of a generic PWR core shown as a 2D slice. Fuel rods are
shown in red and yellow, ostensibly with different fuel compositions.

extract heat, and electricity is generated with a thermodynamic power cycle via the

expansion of steam through a turbine.

Significant computational modeling and simulation is required for reactor design,
licensing, and operation. Monte Carlo (MC) neutron transport is the preeminent
method for obtaining high-fidelity estimates of radiological quantities because of its
continuous (i.e., non-discrete) treatment of space, direction, and energy dimensions.
This stochastic method involves simulating neutron histories—the circuitous paths
that individual neutrons take within a reactor—using a random walk technique. By
simulating a large number of histories, accurate statistical estimates of radiological
quantities can be deduced. A key radiological quantity is the effective neutron
multiplication factor (k.g), defined as the average number of neutrons born from fission
that induce subsequent fissions. A k.g of 1 indicates that the reactor is critical, i.e.,
operating at steady state, whereas ko < 1 and keg > 1 indicate that the fission rate
will decrease or increase over time, respectively. Estimates of k.g are obtained using

MC via a power iteration scheme (Lieberoth 1968).

Simulating neutron histories requires tracking the positions of neutrons within a
computational representation of the reactor, usually a constructive solid geometry
(CSG) model. This is accomplished in a fashion similar to the ray tracing techniques
used in computer graphics rendering. With CSG, models are constructed from
surface primitives (e.g., planes, cylindrical shells, spherical shells) and Boolean logic
operations to form cells, i.e., closed regions with uniform material properties, as
demonstrated in Figure 2. Tracking operations such as those summarized in Table 1

are implemented by querying the surfaces that comprise each cell.

Prepared using sagej.cls

4 The International Journal of High Performance Computing Applications XX(X)

Surfaces Cells
sl s2
s3
AN o7

>«
>0
>7< s5

e I~

e N

Logic used to form cells
cl:-s7
c2:+sl -s2 +s3 -s4 455 -s6 +s7

Figure 2. Demonstration of the CSG construction process, shown as a 2D slice. Plane
surfaces (orange) have surface normals (yellow) denoting which side of the plane is
positive. The outside of the blue cylindrical surface is considered positive. Cell construction
logic is used to form cells 1 and 2. The cell 2 logic can be read as “the intersection of the
space on the positive side of surface 1, the negative side of surface 2, the positive side of
surface 3, ... etc”

Table 1. High-level geometry tracking operations required by MC transport codes.

Tracking operation Inputs Output
find_cell (1) position (1) cell containing the position
distance_to_surface (1) position (1) distance to the next surface
(2) direction (2) next surface
move_within_cell (1) position (1) new position
(2) direction
(3) distance
cross_surface (1) position (1) new cell after crossing the surface
(2) current cell
(3) current surface
(1)

change_direction 1) new direction -

The nested and repeated structures that comprise reactors receive special treatment
for performance and user convenience. A CSG universe is a contiguous geometric
region composed of one or more cells that can be embedded within one or more
parent cells (West et al. 1979). Array universes are special universe types in which
cells comprise a structured mesh. The cells in an array universe must be filled with
other universes which may be either CSG universes or other array universes. Examples
of CSG universes embedded in rectilinear and hexagonal array universes are shown in

Figure 3. Some fission reactors, including PWRs, can be modeled with three levels of

Prepared using sagej.cls

Biondo et al. 5

Standard CSG universes

B-Esl NES

Rectilinear array universe Hexagonal array universe

Array universes filled with standard CSG universes

Figure 3. Demonstration of CSG universes nested within rectilinear and hexagonal array
universes, shown as a 2D slice. The rectilinear array universe is shown with uniform spacing
for simplicity, but non-uniform spacing is required to support typical reactor applications.

universes: an array universe representing the core, with each core array cell filled with
an assembly array universe, and each assembly array cell filled with a CSG universe

containing fuel rods surrounded by coolant (referred to as a pin within this work).

The use of array universes in concert with CSG universes provides tracking
performance benefits. When determining what cell contains a given point, the
hierarchical configuration of nested universes can be exploited by first finding which
assembly contains the point, then which pin within the assembly, and finally which cell
within the pin. This is loosely analogous to standard ray tracing acceleration structures
such as bounding volume hierarchies (BVHs) (Ericson 2004) or k-d trees (Bentley
1975). In addition, because CSG and array universes represent geometry differently,
the tracking operations summarized in Table 1 are implemented separately for each
universe type, allowing each to be optimized. Within this work, objects that carry
out these tracking operations are referred to as trackers. Thus, a CSG universe has
a corresponding CSG tracker, a rectilinear array universe has a rectilinear array tracker,
etc. Array trackers can implement tracking operations significantly more efficiently

than CSG trackers by exploiting the regular structure of array universes.

Prepared using sagej.cls

6 The International Journal of High Performance Computing Applications XX(X)

When using multiple tracker types, polymorphism can be employed to call
tracking functions. On the CPU with C++, this is accomplished by implementing
tracker functions as virtual functions of a tracker base class. However, using GPU
programming models (e.g., HIP, CUDA), it is not clear whether the performance
benefits of different tracker types outweigh the overhead associated with virtual
function calls (Zhang et al. 2021).

Shift is a general-purpose MC radiation transport code developed at Oak Ridge
National Laboratory (ORNL) capable of simulating the behavior of neutrons and high-
energy photons for fission, fusion, and national security applications (Pandya et al.
2016). Shift, written in C++ with abstracted HIP/CUDA device programming models,
supports both CPU and GPU execution (Hamilton and Evans 2019) and is designed to
scale effectively from laptops to leadership-class supercomputers. On the CPU, Shift
uses the Oak Ridge Adaptable Nested Geometry Engine (ORANGE) (Johnson et al.
2023)," which includes CSG, rectilinear array, and hexagonal array trackers, leveraged
via virtual functions. In Shift, GPU polymorphism has previously been avoided by
supporting only a single universe/tracker type.

Prior to this work, Shift only supported the Reactor Tool Kit (RTK) universe type on
the GPU. RTK is a special-purpose universe type that models a full reactor core, and
is separate from the ORANGE package. A single RTK universe always consists of (1)
a rectilinear array representing the core, (2) rectilinear arrays representing assemblies,
and (3) cuboids containing concentric cylinders, representing pins. The RTK tracker
is optimized to track neutrons through this specific configuration. As a result, the
RTK tracker is expected to provide the best possible performance. However, RTK
has limited applicability because not all fission reactors can be modeled with nested
rectilinear grids. Numerous reactor designs consist of hexagonal assemblies (Habush
and Harris 1968; Hejzlar et al. 2013; Betzler et al. 2020), and pebble bed reactors
consist of irregular configurations of spherical fuel elements (Andreades et al. 2016;
Mulder and Boyes 2020). In addition, MC neutron and photon transport is used for
other applications such as nuclear fusion reactors (Juarez et al. 2021; Kos et al. 2023)
and accelerator devices (Radel and Van Abel 2016; Nelson et al. 2022), which involve
geometries with complexity far beyond rectilinear grids.

In this work, three methods for GPU-based multi-universe tracking were imple-

mented in ORANGE to assess the trade-offs between single and multiple tracker

*The ORANGE package is shared between Shift and the Celeritas MC code, used for high-energy physics
detector analysis (Johnson et al. 2021).

Prepared using sagej.cls

Biondo et al. 7

types. The timing results for Shift k. calculations on the Summit (Oak Ridge Lead-
ership Computing Facility 2023b) and Frontier (Oak Ridge Leadership Computing
Facility 2023a) supercomputers at ORNL were recorded for each of the three methods
and compared to RTK timing results. The three methods are outlined as follows.
The dynamic polymorphism (DP) method employs multiple tracker types with virtual
functions. The static polymorphism (SP) method employs multiple tracker types with
switch statements. The single tracker (ST) method avoids polymorphism by using
a single tracker type for all universe types. The ST method is accomplished using
pseudo-array universes (a term specific to this work), which are arrays modeled as
CSG universes and tracked upon with a CSG tracker. Although this approach forfeits
the aforementioned benefits of array trackers, this is counteracted with a bounding
interval hierarchy (BIH) acceleration structure (Wéchter and Keller 2006).

The remainder of this work proceeds as follows. Section 2 provides background on
how Shift solves for kg, including the role of tracking operations. Section 3 introduces
tracking algorithms for CSG and array universes, multi-universe geometries, and RTK
universes. Section 4 describes the implementation of each of the three experimental
multi-universe GPU tracking methods. Section 5 describes the computer hardware on
Summit and Frontier used for this work. Section 6 provides a performance comparison
of the three methods using a model of the NuScale small modular reactor (SMR)
(NuScale Power 2023), composed of rectilinear assemblies. Section 7 demonstrates
the flexibility of the ST method on the Empire microreactor benchmark problem (Lee

et al. 2020; Matthews et al. 2021) composed of hexagonal assemblies.

2 Background

This section provides background on how Shift solves for keg. Section 2.1 describes the
neutron transport equation formulated with kg as the dominant eigenvalue. Section 2.2
describes the power iteration solution method and the role of tracking operations in the
MC random walk process. Section 2.3 describes the Shift implementation of MC power
iteration on the GPU.

2.1 Neutron transport equation

Neutrons interact with fuel and non-fuel nuclei via a variety of different mechanisms

which are broadly organized into three categories:

1. absorption: a neutron is captured by a nucleus,

2. fission: a neutron is captured by a nucleus, which subsequently breaks apart,

Prepared using sagej.cls

8 The International Journal of High Performance Computing Applications XX(X)

3. scattering: a neutron interacts with a nucleus, effectively changing the neutron’s

kinetic energy and direction.

As a neutron travels through a material, the probability that it will undergo one of
these interactions is quantified using nuclear cross sections, functions which depend on
the energy of the neutron, the types of nuclei within the material, and the density and
temperature of the material. Absorption and fission cross sections tend to be negatively
correlated with neutron energy. As a result, within a reactor core, neutrons typically
scatter ~ 10" times before being terminated via absorption/fission. These effects are

quantified in the neutron transport equation:

1

o xFy, ey

(T-Sy =

where T is the transport operator, S is the scattering operator, ¥ is the energy spectrum
of neutrons born from fission, F is the fission operator, and v is the neutron flux,
which describes the number of neutrons that pass through a 2D area per unit time
per unit angle. The T,S,and F operators depend on nuclear cross sections, but these

relationships are omitted for brevity. By collecting the operators in a single term,

A=F(T-9)"1%,)

Equation 1 can be formulated as a standard eigenvalue problem,

ket = A, 3)
where keg is the dominant eigenvalue of A and f, the eigenvector, is the fission source
given by

f=Fq. 4)

Physically, f is a probability density function describing the spatial distribution of
fission neutrons. Like kg, this distribution is not known a priori. Due to the complexity
of the geometry and cross sections, Equation 3 must be solved numerically for most

practical cases.

2.2 Monte Carlo power iteration

The eigenvalue problem presented in Equation 3 can be solved with MC power

iteration. With this method, kg and f are solved iteratively by applying the standard

Prepared using sagej.cls

Biondo et al. 9

power iteration eigenvalue algorithm (von Mises and Pollaczek-Geiringer 1929) to
Equation 3,

1 -
(D = S Af, Q)
k
eff
<f(n+1)>

(n4+1) (n)
keg :keg <f(”)>

; (6)
where (-) denotes integration over space, energy, and angle. This iteration scheme
is carried out using Algorithm 1, where run_histories is an MC neutron transport
simulation. As seen in Algorithm 1, iterations of Equations 5 and 6, referred to as
cycles, are carried out in two stages. First, a sufficient number of inactive cycles are run
to converge the shape of f, with intermediate estimates of k.g discarded. Then active
cycles are run, accumulating kg estimates to produce the final k.g with statistical
uncertainty. Statistical estimates of f and other radiological quantities such as neutron
flux or specific reaction rates are also obtained from active cycles (omitted from
Algorithms 1 and 2 for brevity). These estimates, often calculated within geometry
cells or the volume elements of a superimposed mesh, are called rallies. Active cycles
typically require longer compute times than inactive cycles because of the additional

overhead associated with tallies.

Algorithm 1. MC power iteration algorithm for calculating the converged kog using
m,; inactive cycles, m, active cycles, and n histories per cycle.

1 procedure MC_POWER_ITERATION(m;, Mg, 1)
Set f to initial guess
for inactive_cycle € [1,m;]
kegt, f = run_histories(f, n)

kegt, f = run_histories(f, n)

2

3

4

5 for active_cycle € [1,m,]
6

7 accumulate kg

8

return average of all stored kg

The run_histories MC transport function used in Algorithm 1| is shown in
Algorithm 2. For each of n histories, a neutron birth position is sampled from the
supplied guess for the fission source distribution. A random walk technique is then
used to move the neutron through a computational representation of the reactor.
This algorithm makes use of the geometry tracking operations defined in Table 1.
Tracking operations typically account for 20% or less of the total runtime within an

MC simulation (Hamilton and Evans 2019). Cross section calculations make up the

Prepared using sagej.cls

10 The International Journal of High Performance Computing Applications XX(X)

plurality of runtime because of the large number of memory fetch operations. By
definition, the random walk process imposes divergent neutron paths across histories,
resulting in random memory access. As a result, MC simulations tend to be latency
bound.

Algorithm 2. MC neutron transport algorithm for simulating n neutron histories born
from f, in order to update estimates of k.g and f. This algorithm uses the geometric
tracking operations specified in Table 1.

1 procedure RUN_HISTORIES(f, n)

2 for history € [1,n]
3 sample position () from f
4 sample energy (E£) from fission energy spectrum
5 sample direction (£2) isotropically
6 cell (¢) = find_cell(r)
7 while true
8 calculate the cross section () in ¢
9 distance (d), surface (s) = distance_to_surface(r, 2)
10 sample # of mean free paths (7) before event
11 while d < 7/%
12 T=71-Xxd
13 r = move_within_cell(r, €2, d)
14 ¢ = cross_surface(r, c, s)
15 calculate X in ¢
16 d, s = distance_to_surface(r, 2)
17 r = move_within_cell(r, Q, 7/%)
18 sample event type (&)
19 if £ == scatter
20 update E and €2
21 else if ¢ == fission
22 calculate and store an estimate of kqg
23 store fission sites
24 break
25 else if £ == absorption
26 break
27 calculate updated ke from stored kg values
28 calculate updated f from stored fission sites

29 return updated k.g, updated f

2.3 GPU-based implementation in Shift

On the CPU, Shift carries out MC power iteration using the MC neutron transport
simulation algorithm shown in Algorithm 2. On the GPU, Shift uses an event-based

MC algorithm. As in Algorithm 2, the event-based algorithm involves simulating n

Prepared using sagej.cls

Biondo et al. 11

histories per cycle; however, operations are reordered to take advantage of single
instruction, multiple threads (SIMT) parallelism. All operations—including birth,
tracking operations, and collisions—are performed on a vector of histories. This vector
is masked in order to only perform operations on applicable histories. Each of the
tracking operations in Table 1 is called for a vector of histories via a kernel of the
same name. Full details of the event-based transport algorithm are found in Hamilton
and Evans (2019). This approach leads to smaller kernel sizes and therefore increased
occupancy and higher tracking rates.

3 Tracking algorithms

This section discusses the implementation of the Table 1 tracking operations for
different universe types. For brevity, only the two most algorithmically interesting
tracking operations are discussed: find_cell and cross_surface. Section 3.1 provides
possible implementations of these operations for CSG and rectilinear array universes,
where the latter are shown to have significantly lower time complexity. Hexagonal
array universe tracking algorithms can be implemented using the same strategy as that
used for rectilinear arrays, with the same time complexity. However, hexagonal array
indexing is considerably more complicated, so these algorithms are omitted here for
simplicity. Section 3.2 provides the implementation of multi-universe tracking on the
CPU within ORANGE. Section 3.3 provides the tracking algorithms for the reactor-
specific RTK universe type, used by Shift on the GPU.

3.1 Single universe tracking

Possible implementations of find_cell and cross_surface for a CSG tracker are shown
in Algorithms 3 and 4. Because CSG universes have no underlying structure, find_cell
involves conducting an O(N) search over all of the cells within the universe. The
cross_surface implementation relies on a list of neighbor cells connected to each
surface, which can be generated as a preprocessing step. This neighbor list can then
be searched in O(N) time.

Algorithm 3. Possible CSG tracker version of find_cell.

1 procedure FIND_CELL(pos)
2 for cell € cells

3 if cell contains pos
4 return cell

Prepared using sagej.cls

12 The International Journal of High Performance Computing Applications XX(X)

Algorithm 4. Possible CSG tracker version of cross_surface.

1 procedure CROSS_SURFACE(pos, cell, surf)

2 for new_cell € neighbors(surf)
3 if new_cell == cell

4 continue

5 if new_cell contains pos

6 return new_cell

Possible implementations of find_cell and cross_surface for a rectilinear array tracker
are shown in Algorithms 5 and 6. These algorithms have favorable time complexity
relative to their CSG counterparts. By conducting a binary search over the mesh
divisions, find_cell can be performed in O(log N) time. © The cross_surface operation
is performed in O(1) time because the surface of each cell is known to have only one
neighbor. It requires the current cell, the 7/5/k dimension of the surface being crossed,

and whether the surface is being crossed in the positive or negative direction.

Algorithm 5. Possible rectilinear array tracker version of find_cell.

1 procedure FIND_CELL(pos)

2 fordim € [i, j, k]

3 ijk[dim] = binary_search(mesh[dim], pos[dim])
4 cell = ijk_to_cell(ijk)

5 return cell

Algorithm 6. Possible rectilinear array tracker version of cross_surface.

1 procedure CROSS_SURFACE(cell, dim, dir_sign)
2 ijk = cell_to_ijk(cell)
if dir_sign is positive
ijk[dim] = ijk[dim] + 1
else
ijk[dim] = ijk[dim] - 1
next_cell = ijk_to_cell(ijk)
return next_cell

0 N O B R W

TFor rectilinear grids with uniform spacing, find_cell can be performed in O(1) time by calculating the array
indices directly in each dimension. However, the presence of gaps between adjacent assemblies in most
reactors necessitates the use of non-uniform spacing and therefore a full binary search.

Prepared using sagej.cls

Biondo et al. 13

3.2 Multi-universe CPU tracking in ORANGE

The algorithms shown in Section 3.1 show how possible implementations of CSG and
array trackers operate within single universes. Here, tracking algorithms for geometries
consisting of multiple nested universes are shown, as implemented on the CPU in
ORANGE. The ORANGE CPU version of find_cell and cross_surface are shown in
Algorithms 7 and 8. The find_cell algorithm recursively finds the cell within daughter
universes until reaching the bottom-most (i.e., most embedded) level. In cross_surface,
a surf_universe argument is supplied that denotes the top-most (i.e., least embedded)
level for which the neutron is on a surface, noting that lower-level coincident boundary
surfaces are removed during preprocessing. The cell on the other side of the surface
is then found by recursing through daughters starting at this level. Both algorithms
assume the existence of a polymorphic get_tracker function which returns a tracker

object for a given universe, depending on its type.

Algorithm 7. Multi-universe version of find_cell.

1 procedure FIND_CELL(pos)
2 tracker = get_tracker(root_universe)
cell = tracker.find_cell(pos)
while cell.daughter
tracker = get_tracker(cell.daughter)
cell = tracker.find_cell(pos)

~N O R W

return cell

Algorithm 8. Multi-universe version of cross_surface. For simplicity, args can be
assumed to be a struct containing the union of the arguments to the standard CSG
and array versions of cross_surface.

1 procedure CROSS_SURFACE(surf_universe, args)
2 tracker = get_tracker(surf_universe)

3 next_cell = tracker.cross_surface(args)

4 while next_cell.daughter

5 tracker = get_tracker(next_cell.daughter)
6 next_cell = tracker.find_cell(args.pos)

7

return next_cell

3.3 RTK tracking

As mentioned in Section 1, RTK is the reactor-specific universe type currently
employed by Shift for GPU execution. RTK is a template universe type explicitly
instantiated to contain the three nested levels of universes necessary to model reactors

Prepared using sagej.cls

14 The International Journal of High Performance Computing Applications XX(X)

such as PWRs with rectilinear configurations. An RTK universe consists of a rectilinear
array core universe populated with rectilinear array assembly universes, each populated
with pin universes. The pin universe is not a full, general-purpose CSG universe, but
rather a limited CSG universe consisting of concentric cylinders within a rectangular
cuboid cell.

The RTK version of find_cell and cross_surface are shown in Algorithms 9 and 10.
These algorithms resemble the standard multi-universe tracking algorithms shown in
Section 3.2, with two key differences. First, because there are exactly three levels
of universes, the while loops over daughter universes can be unrolled (in practice,
this is achieved through C++ template recursion). Second, the types of universes at
each level are known at compile time. Whereas the multi-universe tracking algorithms
shown in Section 3.2 rely on a polymorphic get_tracker function, Algorithms 9 and 10
can call non-polymorphic get_rect_tracker and get_csg_tracker functions. As a result
of these simplifications, RTK is expected to be the most performant tracker type.
However, the clear limitations on geometric complexity imposed by RTK motivate the
implementation of general-purpose GPU tracking capabilities.

Algorithm 9. RTK version of find_cell.

1 procedure FIND_CELL(pos)

2 core_tracker = get_rect_tracker(core_universe)
core_cell = core_tracker.find_cell(pos)
assm_universe = core_cell.daughter
assm_tracker = get_rect_tracker(assm_universe)
assm_cell = assm_tracker.find_cell(pos)
pin_universe = assm_cell.daughter

pin_tracker = get_csg_tracker(pin_universe)
cell = pin_tracker.find_cell(pos)

10 return cell

O 0 N AN N AW

4 Methodology: Multi-universe GPU tracking methods

This section describes the ORANGE implementation of the three experimental GPU-
based multi-universe tracking methods explored in this work. The DP and SP methods,
which rely on universe-specific tracker types, were implemented only for CSG and
rectilinear array universes for the purposes of this work. The ST method, which relies

on only a single tracker, supports CSG, rectilinear array, and hexagonal array universe

types.

Prepared using sagej.cls

Biondo et al. 15

Algorithm 10. RTK version of cross_surface.

1 procedure CROSS_SURFACE(surf_universe, args)
2 if surf_universe.level == core

3 core_tracker = get_rect_tracker(surf_universe)
4 core_cell = core_tracker.cross_surface(args)

5 assm_universe = core_cell.daughter

6 assm_tracker

7 = get_rect_tracker(assm_universe)

8 assm_cell = assm_tracker.find_cell(args.pos)
9 pin_universe = assm_cell.daughter

10 pin_tracker = get_csg_tracker(pin_universe)
11 new_cell = pin_tracker.find_cell(args.pos)

12 else if surface_universe.level == assembly

13 assm_tracker = get_arr_tracker(surf_universe)
14 assm_cell = assm_tracker.find_cell(args.pos)
15 pin_universe = assm_cell.daughter

16 pin_tracker = get_csg_tracker(pin_universe)
17 new_cell = pin_tracker.find_cell(args.pos)

18 else if surface_universe.level = pin

19 pin_tracker = get_csg_tracker(surf_universe)
20 new_cell = pin_tracker.find_cell(args.pos)

21 return new_cell

4.1 Dynamic polymorphism (DP) method

This first method uses the standard multi-universe tracking algorithms put forth in
Section 3.2, i.e., the approach used on the CPU in ORANGE. A tracker base class
is created, defining the tracking operations listed in Table 1 as pure virtual methods.
CSG and rectilinear array tracker classes inherit from the base class and implement the
virtual functions. A polymorphic get_tracker function returns a pointer to either a CSG
or rectilinear array tracker object. For a fair comparison, within CSG universes, the DP

method uses BIH acceleration, which is described in Section 4.3.

4.2 Static polymorphism (SP) method

Like the DP method, the SP method uses separate tracker types for CSG and rectilinear
array universes, but this is achieved with static polymorphism. Using this approach,
each tracker operation involves a switch statement predicated on the type of the
current universe (represented by an enumeration, UType). For example, a possible
implementation of find_cell is shown in Listing 1. This function takes three arguments:
the universe identifier (uid) of the current universe, the position, and a set of geometry

parameters which supply a mapping between uid and UType. A CSG or rectilinear

Prepared using sagej.cls

16 The International Journal of High Performance Computing Applications XX(X)

tracker is created based on the UType of the universe specified by the uid. The

find_cell method is then called on the tracker, and the resulting cell is returned.

Listing 1. Possible C++ implementation of find_cell using static polymorphism.
This code block has equivalent logic to the code in Listings 2, 3, and 4.

1 __host__ _ _device_

2 Cell find_cell (UniverseId uid,

3 Position pos,

4 Params params)

5

6 switch (params.types[uid])

7 {

8 case UType::CSG:

9 auto tracker

10 = CSGTracker (uid, params)
11 return tracker.find_cell (pos);
12 case UType: :RectArray:

13 auto tracker

14 = RectArrayTracker (uid,

15 params)
16 return tracker.find_cell (pos);
17 }

18}

In ORANGE, this behavior is achieved via a template metaprogramming approach
which allows a single set of switch statement logic to be used by all tracking operations,
as shown in Listings 2, 3, and 4. In Listing 2, a Traits struct is templated on
UType, and template specializations are used to define the corresponding tracker type
for each universe type. A visit_universe_type function returns the output of
a given functor, which takes a Traits object as an argument. Listing 3 provides a
visit_tracker function which returns the output of a supplied functor £, which
takes a tracker of arbitrary type as an argument. This is achieved by wrapping f in
a second functor—f£2, which calls £ for a given Traits object—and then calling
visit_universe_type with this second functor.

Listing 4 shows how the visit_tracker function can be used to achieve
polymorphism. A find_cell functor is first created. This functor, along with a uid
and params, is passed to visit_tracker, and the resulting cell is returned.
Upon compilation, code in Listings 2, 3, and 4 produce bitcode equivalent to that
of Listing 1. The other Table 1 tracking operations are implemented in an identical

fashion to the find_cell example in Listing 4. As was the case with the DP method,

Prepared using sagej.cls

Biondo et al.

CSG universes in the SP method also use BIH acceleration, which is described in
Section 4.3. Alternatives to this template metaprogramming approach include the

curiously recurring template pattern (CRTP) or std: : variant with std: :visit,

which would likely perform similarly.

Listing 2. Simplified C++ function for visiting different universe types.

O 0 N O W AW =

L T N T N T S U
WY = O 0O X 9N R W NN = O

24
25
26

template<UType U>
struct Traits;
template<>
struct Traits<UType::CSG>
{
using tracker_type = CSGTracker;
}
template<>
struct Traits<UType::RectArray>
{

using tracker_type = RectArrayTracker;

template<class F>
inline constexpr
__host___ __device__ decltype (auto)
visit_universe_type (F&& £, UType ut)
{
switch (ut)
{
case UType: :CSG:
return f (Traits<UType::CSG>{})
case UType: :RectArray:
return f (Traits<UType::RectArray>{})

Prepared using sagej.cls

18 The International Journal of High Performance Computing Applications XX(X)

Listing 3. Simplified C++ function for visiting different tracker types.

1 template<class F>

2 __host___ _ _device__ decltype (auto)
3 wvisit_tracker (F&& f,

4 UniverselId uid,

5 Params params)

6 {

7 auto f2 = [&] (auto traits) {

8 return f (traits::tracker_type(
9 uid,

10 params)) ;

11 }

12

13 return visit_universe_type (

14 f2,

15 params.universe_types[uid]);
16}

Listing 4. C++ implementation of find_cell using the visit_tracker function shown

in Listing 3.

1 auto find_cell = [&pos] (auto&& tracker) {
2 return tracker.find_cell (pos);

3 }

4 Cell cell = wvisit_tracker(find_cell,

5 uid,

6 params)

4.3 Single tracker (ST) method

While the DP and SP methods benefit from tracking algorithms optimized for specific
universe types, it is not clear that these benefits offset the potential performance pitfalls
of polymorphism, i.e., virtual function calls in the case of the DP method and divergent
execution paths in the case of the DP and SP methods. For comparison, instead of
employing multiple polymorphic tracker types, the final approach uses a single CSG
tracker for CSG, rectilinear array, and hexagonal array universes. This is accomplished
by converting rectilinear and hexagonal array universes into CSG universes. To do so,
array cells are explicitly modeled as CSG cells using the method shown in Figure 2.

This conversion is done automatically in ORANGE, and the resulting CSG universes

Prepared using sagej.cls

Biondo et al. 19

Figure 4. Example of a pseudo-rectilinear-array neighbor list. A neutron in the purple cell
crossing the magenta surface has all 31 gold cells as neighbors.

are referred to as “pseudo-array universes,” a term specific to this work. Modeling
arrays in this fashion is not a new approach: it is the simplest way of modeling an array

within an MC code without specialized array universe types.

Because pseudo-array universes are CSG universes, they use CSG tracking
algorithms rather than the array versions that have improved time complexity. In other
words, for pseudo-arrays, naive implementations of find_cell and cross_surface would
each use linear searches over all cells or all neighbors, respectively. The cost of the
simple neighbor-based approach is exacerbated by the large number of neighbor cells
for pseudo-array surfaces, since planar surfaces in CSG geometries are unbounded.
Figure 4 demonstrates the potential inefficiency: when crossing from the purple cell
through the magenta surface, which bounds all 32 colored cells, the neighbor list
includes all 31 gold cells. It is noted that this issue does not arise with cell-based
neighbor lists, an alternative approach in which a mapping between each cell and its

neighbor cells is generated dynamically during runtime (Harper et al. 2020).

To improve the performance of tracking operations for CSG universes, including
pseudo-array universes, a BIH acceleration structure was implemented. The BIH
construction process is demonstrated in Figure 5. First, axes-aligned bounding boxes
are generated for each cell using a simple method that involves successively truncating
the universe bounding box using the bounding planes associated with each of the cell’s
surfaces. Although the nascent implementation of this method in ORANGE does not
yet guarantee minimum bounding boxes for arbitrarily complex cells, it is effective
for the simple geometric shapes found within the reactor models in this work. Once

bounding boxes are ascertained, a partition plane is then chosen, and bounding boxes

Prepared using sagej.cls

20 The International Journal of High Performance Computing Applications XX(X)

are partitioned into two sets according to the location of each bounding box center.
For each of the two sets of partitioned bounding boxes, bounding planes are created by
moving the partition to fully enclose all bounding boxes. By performing this process
recursively on each set of bounding boxes, a binary tree structure is created, with edges
specifying the half-spaces which contain all children.

One key feature of BIH trees is that for a given node, the half-spaces created by the
bounding planes may overlap. This guarantees that each cell appears in the BIH tree
exactly once, unlike £-D trees that must store a cell twice if its bounding box is bisected
by a partition. This provides an advantage in the pseudo-array use case in which
adjacent cells may have bounding boxes that overlap slightly because of floating point
error. BIH trees can handle this case without significant performance consequences.
BVH trees can also handle this overlap case. However, BVH trees may require more
memory because they store six planes per node, significantly more than the two planes
required by BIH trees. An open research question within the BIH construction process
is how to choose partitions. For the purposes of this work, a standard surface area
heuristic (SAH) partitioning scheme (Wald 2007) was used. This was implemented
by evaluating three equally spaced candidate partitions per axes at each partitioning
step. Candidate partitions were evaluated using a cost function balancing the number
of bounding boxes and the total surface area of bounding boxes appearing on each side
of the partition.

The find_cell and cross_surface functions are accelerated by traversing the BIH tree.
For find_cell, traversal is terminated when a cell is found that contains the supplied
point. For cross_surface, the traversal is terminated when a cell is found that contains
the supplied point, excluding the cell in which the neutron originated. When traversing
the BIH tree, both edge conditions must be tested at each node because the half-spaces
are allowed to overlap. BIH trees are enabled for all CSG universes—not just pseudo-
array universes. As mentioned in Sections 4.1 and 4.2, BIH trees are enabled for all
CSG universes in the DP and SP methods as well.

5 Hardware description

All simulations were performed on the Summit and Frontier supercomputers at ORNL.
Summit has 4608 compute nodes, each consisting of two 22-core IBM Power9 CPUs,
and six NVIDIA Tesla V100 GPUs, each consisting of a single graphics complex die
(GCD). One core per Power9 is reserved for system tasks, leaving 42 usable CPU cores
per node. On the CPU side, 512 GB of RAM are available, and each V100 has 16 GB
of RAM. Within this work, code was compiled on Summit with CUDA 11.5.2.

Prepared using sagej.cls

Biondo et al. 21

Step 1: For each shape, 7
find the axis-aligned |__|1
minimum bounding .

box and its center. \g\] i .

-I—-'.

Step 2: Choose a
partition and divide |__H . — _H .
bounding boxes into | - 1L
two sets based on . E |

|

| 1
which side contains I :
its center.

Step 3: For each set,

create a bounding —
plane that bounds the y=bl 1L
set in the direction of
the partition.

Step 4: Recursively apply steps 2 and 3 until all bounding boxes are partitioned, resulting
in the tree structure below. Each inner node has edge conditions based on bounding planes.
Only the edge conditions for the root node are shown for brevity.

root

y <bl y>b2

o

s I=I

~

Figure 5. BIH construction process demonstrated in 2D using the states of the American
West. Map outline from OpenClipart (2023).

Frontier has 9408 compute nodes, each consisting of a 64-core AMD 3™ Gen EPYC
CPU, and four AMD Radeon Instinct MI250X, each consisting of two GCDs. Eight

Prepared using sagej.cls

22 The International Journal of High Performance Computing Applications XX(X)

CPU cores are reserved for system tasks, leaving 56 usable CPU cores per node. On
the CPU side, Frontier also has 512 GB of RAM, but each MI250X has 128 GB of
RAM. As a result, Frontier has four times as much GPU RAM per GCD compared to
Summit (64 GB vs. 16 GB). Within this work, code was compiled on Frontier with
ROCm 5.6.0.

6 Performance testing

The performance of the three multi-universe GPU tracking methods described in
Section 4 relative to RTK (described in Section 3.3) was assessed by obtaining timing
results for a rectilinear-array-based reactor problem. A full-core model of the NuScale
SMR (Smith 2017), shown in Figure 6, was chosen for this purpose. The small size
of the NuScale design—about one-eighth the size of a typical PWR—is economically
attractive because of its low capital cost (Black et al. 2019), and also permits detailed
full-core MC analysis. Likewise, this problem served as the challenge problem for
the ExaSMR project within the Exascale Computing Project, in which Shift was used
for GPU-based coupled neutron transport / thermal hydraulics analysis (Merzari et al.
2023).

The NuScale design consists of 37 assemblies arranged in a rectilinear grid.
Each assembly is a 17x17 array of pins and contains uranium dioxide fuel with a
235U enrichment of either 1.6%, 2.4%, or 3.1% (by mass). The 3.1%-enriched fuel
assemblies in the inner circle contain borosilicate glass burnable neutron absorber
rods. Spacer grids and nozzles have been homogenized into slabs for simplicity. For
this analysis, the fresh (i.e., non-depleted) fuel version of the problem was used. Fresh
fuel contains many fewer nuclides than depleted fuel, thereby minimizing the time
required to calculate cross sections and maximizing the relative time spent on tracking
operations. As a result, inactive cycles within this problem (where no time is spent on
tallies) represent the scenario in which tracking operations are expected to comprise

the largest fraction of runtime.

The computational representation of this reactor takes on several different forms at
runtime when testing the four tracking methods. With the RTK method, the entire core
consists of a single RTK universe. With the DP and SP methods, the core consists of an
array universe with embedded array universes representing assemblies, each containing
CSG universe pins. BIH acceleration is used within these CSG pin universes. This is
beneficial because each pin consists of a large number of cells (~ 102); due to the

complexity of the model, pins are split into 40 axial regions. With the ST method,

Prepared using sagej.cls

Biondo et al.

23
175

150
125
100
75
50
25
0

0 25 50

uranium dioxide,
3.1% enriched

y (cm)

uranium dioxide,
2.4% enriched

uranium dioxide,
1.6% enriched

borated water

75

100 125 150 175
x (cm)

stainless steel

borosilicate
glass
200

zircalloy
150

cm)

homogenized
spacer grid

2100

homogenized

nozzle
50

I helium
0 I air
0 25 50 75 100 125 150 175
x (cm)
Prepared using sagej.cls

Figure 6. Midplane radial (top) and axial (bottom) slices of a full core model of the NuScale
SMR from Smith (2017).

24 The International Journal of High Performance Computing Applications XX(X)

—8— RTK, inactive =#— RTK, active
—8— DP, inactive == DP, active
—&— SP, inactive —&— SP, active
—8— ST, inactive —&— ST, active

x105 Summit

1.50

1.25 1

0.75 A

0.50 . /ﬂ—_‘

0.25 A

tracking rate (histories/s/GCD)

0.00 T T T T T T
00 02 04 06 08 1.0 12 14

workload (histories/cycle/GCD) x107

%105 Frontier

tracking rate (histories/s/GCD)

0.00 T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0

workload (histories/cycle/GCD) x107

Figure 7. Neutron tracking rates as a function of the number of histories run by each GPU
GCD on Summit and Frontier for the NuScale SMR problem.

the core, assemblies, and pins are all CSG universes, and each benefits from BIH
acceleration.

For each of the four tracking methods, performance testing was conducted by
measuring the tracking rate, i.e., the number of histories simulated per unit time,
over a sweep of workloads. Here, workload refers to the number of histories per
cycle assigned to each GPU GCD. Each trial consisted of 10 inactive cycles and 10
active cycles using all available GPU GCDs on a single node of Summit or Frontier.
During active cycles, the neutron flux was tallied on a 119 x 119 x 30 superimposed

rectilinear mesh (425,830 mesh volume elements).

Prepared using sagej.cls

Biondo et al. 25

6.1 Tracking rate results

Tracking rate results are shown in Figure 7, noting that both plots have different « scales
but the same y scale. As expected, the tracking rate increased with workload for all four
methods, because large workloads allow the GPU to more effectively hide the latency
of memory fetches associated with cross section calculations. Inactive cycle tracking
rates are higher because no time is spent processing tally results. On Frontier, tracking
rates for all four methods are near their asymptotic limit at a workload of 2.8 x 107
histories/cycle/GCD, well before running out of memory, which was found to occur at
5 x 107 histories/cycle/GCD for RTK and 3.7 x 107 histories/cycle/GCD for the DP,
SP, and ST methods. However, on Summit, which has 4x less RAM/GCD, all four
methods ran out of memory prior to nearing an asymptotic limit, with RTK running out
of memory at 1.2 x 107 histories/cycle/GCD and the DP, SP, and ST methods running
out of memory at 8 x 10° histories/cycle/GCD.

Aside from the 1 x 10° histories/s/GCD inactive cycles, in which the low workloads
cause the kernel launch overhead to wash out any differences between the methods,
the relationships between the performance of the four methods remained constant
over all workloads. The highest tracking rates were achieved with RTK, as expected,
followed by the SP method, the ST method, and the DP method. Further analysis
was performed with the 8 x 10 histories/cycle/GCD trials on Summit and 2.8 x 107
histories/cycle/GCD trials on Frontier. Tracking rates for each of the four methods
are shown in Table 2. Results show that all three experimental methods achieve over
90% of the RTK tracking rate on Summit. On Frontier, the DP, SP, and ST methods
achieve 77.8%, 91.2%, and 83.4% of the RTK tracking rate, respectively, during
inactive cycles, with all methods achieving at least 87.9% of the RTK tracking rate
during active cycles. These results show that using universe-specific tracker types
provides better performance than using a single tracker type for all universe types,
provided that this can be done without virtual function calls. However, although the SP
method consistently provides the best performance, no method incurred a significant

performance penalty.

6.2 Performance of individual tracking kernels

The percentages of the total GPU runtime (inactive and active cycles) spent in tracking
kernels are shown in Table 3. These values vary from 12.1-26.1%, indicating that
tracking operations do not dominate runtime, as expected. Likewise, much larger
differences in the performance of the four methods are observed when only considering

the time spent within tracking kernels. Figure 8 shows the total time spent within

Prepared using sagej.cls

26 The International Journal of High Performance Computing Applications XX(X)

Table 2. GPU tracking rates for the NuScale SMR problem, run on Summit with 8 x 10°
histories/cycle/GCD and Frontier with 2.8 x 10 histories/cycle/GCD.

Summit Frontier
Method GPU tracking Fraction of GPU tracking Fraction of
rate RTK tracking rate RTK tracking
(histories/s/GCD) rate (%) (histories/s/GCD) rate (%)

o RIK 1.38 x 10° 100 1.57 x 10° 100
= DP 1.27 x 10° 92.2 1.22 x 10° 77.8
g SP 1.36 x 10° 98.5 1.43 x 10° 91.2
= ST 1.28 x 10° 93.3 1.31 x 10° 83.4
RTK 6.79 x 10* 100 7.62 x 10* 100
2 pp 6.38 x 10* 93.9 6.69 x 10* 87.9
8 sp 6.69 x 10* 98.6 7.26 x 10* 95.3
ST 6.49 x 10* 95.5 6.93 x 10* 91.0

Table 3. Fraction of total GPU runtime (inactive and active cycles) spent in geometry
tracking kernels for the NuScale SMR problem. Summit results are for 8 x 10°
histories/cycle/GCD and Frontier results are for 2.8 x 107 histories/cycle/GCD.

Runtime fraction (%)

Method Summit Frontier

RTK 12.1 13.3
DP 19.2 26.1
SP 13.6 18.3
ST 17.2 23.3

the five principal tracking kernels introduced in Table 1. For a fair comparison, both
Summit and Frontier results are from workloads of 8 x 10 histories/cycle/GCD. This
figure shows that the DP, SP, and ST methods spent 1.70%, 1.14x, and 1.50x more
time, respectively, in tracking kernels compared to RTK on Summit, and 2.45x,
1.5x, and 2.02 x more time, respectively, compared to RTK on Frontier. These results
highlight the supremacy of the SP method, almost achieving parity with RTK on

Summit.

6.3 GPU to CPU performance comparison

Whereas overall tracking rates were slightly higher on Frontier, significantly more
time was spent in tracking kernels on Frontier compared to Summit. Frontier also
lags behind Summit when comparing GPU performance to CPU performance. Table
4 compares GPU to CPU tracking rates in terms of (1) the number of CPU cores
required to match a single GPU GCD, and (2) the speedup, defined as the ratio of
the GPU tracking rate using all GPUs on a single node to the CPU tracking rate

Prepared using sagej.cls

Biondo et al. 27

I cross_surface
I distance to_surface
change direction
= move_to_position
I find cell
Summit
600
500 -
4007 361.8
& — 319.4
o 300]
£ 242.9
i 212.8 —
200 4
0 -
RTK DP SP ST
Frontier
600
539.9
|]
500 -
445.3
[]
400
@ 330.2
GE) 300 - |]
=] 220.6
200 -
100 _.
0 -
RTK DP SP ST

Figure 8. Total time spent in the 5 principal tracking kernels on Summit and Frontier for the
NuScale SMR problem, both with 8 x 10° histories/cycle/GCD. All tracking kernels not
listed here accounted for less than 0.3% of the total tracking time.

using all CPU cores on a single node. Noting that both GPU and CPU resources
differ between these two machines, Summit has higher CPU core equivalence and
speedups compared to Frontier in all cases. This can be attributed to the fact that
significantly better CPU performance is achieved on Frontier, where a tracking rate of
4.94 x 10? histories/s/core was achieved for inactive cycles, compared to 2.82 x 103

histories/s/core for inactive cycles on Summit.

Prepared using sagej.cls

28 The International Journal of High Performance Computing Applications XX(X)

Table 4. GPU to CPU performance comparison for the NuScale SMR problem, run on
Summit with 8 x 10° histories/cycle/GCD and Frontier with 2.8 x 107 histories/cycle/GCD.
Speedup is defined as the ratio of the GPU tracking rate using all GPUs on a single node to
the CPU tracking rate using all CPU cores on a single node.

Summit Frontier
Method CPUcore Speedup CPUcore Speedup
equivs. equivs.
per GCD per GCD
o RTK 48.9 6.98 31.7 4.53
= DP 45.0 6.43 24.7 3.53
§ SP 48.1 6.87 28.9 413
= ST 45.6 6.51 26.4 3.78
RTK 28.1 4.01 15.3 2.19
2 pp 26.3 3.76 13.4 1.92
g SP 27.7 3.95 14.6 2.08
ST 26.8 3.83 13.9 1.99

6.4 Profiling

In order to better understand the performance differences between the four methods,
profiling was done using NVIDIA NSight Compute on a V100 (i.e., a Summit GPU)
and AMD rocProf on an MI250X (i.e., a Frontier GPU) using a workload of 8 x 10°
histories/cycle/GCD. Results appear in Table 5. On both the V100 and MI250X, RTK
had the highest tracking rates and also the highest theoretical occupancies for the two
most expensive kernels (cross_surface and distance_to_surface). The DP method had
the lowest tracking rates on the V100 and MI250X and also the lowest theoretical
occupancies for cross_surface and distance_to_surface on the V100. On the V100, all
kernels except move_within_cell had higher theoretical occupancy with SP compared to
DP, which was confirmed to be reflected proportionally in register usage. The fact that
the DP and SP methods are identical other than their polymorphism implementation
suggests that the virtual functions themselves increase register usage and therefore
decrease occupancy. Achieved occupancy was observed to be strongly correlated with
theoretical occupancy and did not provide any further insights. On the MI250X, in
contrast to the V100, the DP method had the same theoretical occupancy as SP for all
kernels except change_direction.

On both the V100 and MI250X, there were no differences in theoretical occupancy
between SP and ST because these two methods were run using the exact same kernels
within the same executable. This was done because the SP method still needs the ST
code for BIH acceleration within CSG universes. While the ST method does not need

to be compiled with the SP code in place, stripping out the relatively small and simple

Prepared using sagej.cls

Biondo et al. 29

SP code did not result in an increase in the ST tracking rate. Consequently, a single
executable was maintained for simplicity.

On the V100, only minor differences were observed in the L1 and L2 cache hit
rate, and these were not correlated with tracking rate results. This is expected because
in all cases, cache performance is likely governed by cross section lookups occurring
within the physics kernel launches interspersed with the geometry kernel launches.
The differences in branch efficiency between the methods were also not correlated
with tracking rate results. Similar results were obtained on the MI250X, noting that (1)
only the L2 hit rate can be obtained with rocProf, and (2) instead of branch efficiency,
rocProf provides vector arithmetic logic unit (VALU) utilization, which is correlated
with branch efficiency.

Finally, on the V100, the number of warp stalls during instruction fetches correlated
strongly with tracking rate results. * The DP method resulted in about 3x as many warp
stalls within the cross_surface and distance_to_surface kernels, suggesting that virtual

function calls put additional pressure on the instruction cache.

6.5 \Verification

Single node performance testing trials, which were run with only 10 inactive and 10
active cycles, were not sufficient to produce converged keg results. To verify that all
four tracking methods produce the same solution, a final trial was performed for each
method on 50 nodes of Frontier with a workload of 2.5 x 10° histories/cycle/GCD,
for a total of 10% histories per cycle. For each trial, 200 inactive cycles and 400 active
cycles were run. A lower workload was necessary to complete all 600 cycles within
Frontier’s walltime limit. Converged k.g values agreed closely, as shown in Table 6.
Neutron flux results for all 4 methods also matched expectations. Figure 9 shows the
converged flux for the SP method trial. This figure clearly shows the depression on the

flux within the borosilicate glass rods, which act as neutron absorbers.

7 Demonstration problem

In Section 6.1, the SP method consistently provided the best performance, but all three
methods achieved tracking rates reasonably close to that of RTK. From a software
engineering perspective, when considering multiple approaches, the trade-off between
performance and other factors such as code simplicity and maintainability must be

assessed. The ST method achieves over 90% of the SP method tracking rate in all cases

fObtained via the smsp__pcsamp_warps_issue_stalled.no_instructions metric.

Prepared using sagej.cls

30 The International Journal of High Performance Computing Applications XX(X)

Table 5. Profiling results on NVIDIA V100 and AMD MI250X GPUs using a workload of

8 x 10° histories/cycle/GCD. Highlighted columns show the metrics correlated with

performance results.

L'16 '8¢ G79 $666 0'v6 6L T99 0s [[°9"puy
0'¥8 LS9 00T Sy 001 869 S6'IL 00T [[9o7unpIm-2A0W
968 N 8Y 00T 99 001 91s €1y 0S uonoaIIp-a3uLYd LS
968 4% 0S €Cs9 8°L8 ge6s LIL 14 90BJINS~0])"3JUeISIp
768 69 0S 0119 L'86 I've €0L SLE 90BJINSSSOIO
L'16 ¥'8¢ G29 0rLE 0c6 V6L 8¢9 0s [[°>"puy
0'¥8 ¥7'S9 00T el 00T 669 07CL 00T [[9o7ulpIM~2A0W
968 149 00T 9¢ 001 €0s I'vb 0S uonoaIIp-Zueyd ds
968 %Y 0S IvLe 768 68y VL ¢ 90BJINS~0)730URISIP
9°L8 069 0¢ €SI 6°L6 LCL €89 SLE 90BJINS~SSOId
L'16 Y S29 96L8 66 cs9 T'LS ¢¢ [[e>7puy
0'¥8 99 00T £C 001 669 07CL 00T [[S97 UM~ SA0W
968 8IS 0S 0L 001 ves 0Sy GC uornIIp-o3uLyd da
968 Svs 0S 1€0°01 968 8L9 96§ ¢l 908JINS~0)"30ULISIP
9°L8 69 0s 158y €'L6 Yv9 665 194 90BLIMS™SSOI0
L'16 ['8S 00T 86¢ 8'8L L'69 LES 00T [[9957puy
€98 €9 00T LT 00 88S L99 00T [[So7unIM~sA0W
788 18 00T 143 001 ¥'0s O°Sv 001 uondaIIp-agueyd RA
968 L'€S 00T 9ce 6'S8 §99 08¢ 0s 908JINS~0)"30URISIP
698 voL 00T LS9 6'68 6'TL 8'LS SL 9OBJINSSSOIO
@)
(%) S3Yd319J (%) (%)
(%) el (%) uononysur (%) JJel1 el (%)
uoneziun)y Aouednooo woij Aduamoyje 1y ny Kouednooo
NIVA T Teonarooyy, sqeisdrepy youelg (4! I'T [edRaI0dY], [PUISY POWPPIN
XO0STIN 00TA

Prepared using sagej.cls

Biondo et al. 31

Table 6. Converged k. values and 1o statistical uncertainties for the NuScale SMR
problem, obtained on 50 nodes of Frontier with 2.5 x 10° histories/cycle/GCD, with 200
inactive and 400 active cycles.

Method kot

RTK 1.046076 + 0.000005
DP 1.046076 £ 0.000005
SP 1.046067 £ 0.000005
ST 1.046072 £+ 0.000005

160

140

120

80

neutron flux (cm~2 source™?)

60

40

40 60 80 100 120 140 160
X (cm)

Figure 9. Converged neutron flux distribution on the midplane of the NuScale SMR
problem using the SP method, obtained on 50 nodes of Frontier with 2.5 x 10°
histories/cycle/GCD, with 200 inactive and 400 active cycles. The 1o statistical
uncertainties in the flux on this slice are all less than 0.15% within the core region.

shown in Table 2 and has the added benefit of not requiring an additional hexagonal
array tracker. This is advantageous for hexagonal-array-based reactors, which cannot
be represented using RTK, and would otherwise require the development of a GPU-
based hexagonal array tracker for use with the SP method. To demonstrate this benefit,
the ST method was used to perform a keg calculation on the Empire microreactor
benchmark problem that consists of nested hexagonal arrays, as shown in Figure 10.

Microreactors, even smaller than SMRs, are designed to be factory assembled and

Prepared using sagej.cls

32 The International Journal of High Performance Computing Applications XX(X)

easily transported in order to supply power for remote areas, disaster relief, and space
applications.

The Empire microreactor consists of 18 hexagonal assemblies arranged around a
central void region. Each assembly contains a total of 217 pins: 60 uranium nitride
fuel pins with 16.05% 23°U enrichment (by mass), 96 yttrium hydride moderator pins,
and 61 stainless steel heat pipes filled with liquid sodium. Within this model, material
within the heat pipe pins is homogenized for simplicity. The core is surrounded by 12
control drums which contain a europium boride neutron absorber on one side. These
drums can be rotated to change the absorber configuration to control the reactivity
within the core. For this analysis, the “drums-in” configuration was used, with all
absorbers directly facing the core.

A Cartesian mesh tally would require a prohibitively large number of elements in
order to conform to the hexagonal pins and assemblies found in the Empire geometry,
and Shift does not yet support hexagonal mesh tallies on the GPU. Thus, cell-based
tallies were used to tally the flux and fission source density within each fuel pin.
For high-resolution results, each fuel pin was subdivided into 360 cells, with 3 radial
divisions, 4 circumferential divisions, and 30 axial divisions. This resulted in a total of
388,800 cell tallies, similar to the number of elements in the Cartesian mesh tally used
for the NuScale SMR problem.

The problem was run on 100 Frontier nodes using all eight GCDs on each node,
with a workload of 10° histories/cycle/GCD, for a total of 8 x 10® histories/cycle. To
achieve converged results, 120 inactive cycles and 120 active cycles were performed.
For comparison, CPU results were obtained on a single node of Frontier with 2 x 106
histories/cycle for 120 inactive cycles and 120 active cycles.

Converged flux results are shown in Figure 11. As expected, the highest flux occurs
in an annular region around the center of the reactor, i.e., the region where leakage
to the outside of the reactor and inner void region are minimized. Figure 12 shows
the converged fission source. As expected, the highest fission source density occurs
around the edges of fuel rods. For rods in the outer parts of assemblies, the fission
source density is observed to be highest on the inward-facing edge. A converged kes
of 1.026772 £ 0.000003 was obtained.

Table 7 shows tracking rates, as well as GPU vs. CPU comparison results, in the
same format as that used in Table 4. For inactive cycles, the tracking rate of 4.74 x 10%
histories/s/GCD is 36.2% of the ST method tracking rate for the NuScale SMR problem
on Frontier. For active cycles, the tracking rate of 4.33 x 10% histories/s/GCD is 62.5%
of the ST method tracking rate for the NuScale SMR problem on Frontier. The 8.65%
degradation in tracking rate between inactive and active cycles for this problem is much

Prepared using sagej.cls

Biondo et al. 33

100 1 uranium nitride,
16.05% enriched
507 homogenized
heat pipe
§ o]
» stainless steel 316
_50 -
yttrium hydride
—100 A
T T T T T europium boride
—100 -50 0 50 100
X (cm)
60 1 L beryllium
40 1
=]
=20 A
N
0 - I air
_20 T T T T T —
—100 =50 0 50 100
X (cm)

Figure 10. Midplane radial (top) and axial (bottom) slices of a full core model of the Empire
microreactor in “drums-in” configuration.

less than the 47.1% degradation observed in the NuScale SMR problem. This is due
to the fact that the cell tallies used in this problem have significantly less overhead
than tracking on the superimposed mesh tally for the NuScale SMR problem. When
considering both inactive and active cycles, an overall speedup of 2.19x was obtained.

8 Conclusion

In this work, three methods for GPU-based neutron tracking within multi-universe

geometries were tested and compared to RTK. For the NuScale SMR problem, the

Prepared using sagej.cls

34 The International Journal of High Performance Computing Applications XX(X)
le-5
80 . . o - 1.75
SERERGRS LELRRIR, (KTREDRY
60 = o:o.. '..o:. .'.° .o._oo:-..“..o:o
:.o. eS|: - 1.50
40 - SErELE ahasls,
....t 0....
0:..' "o:o _1-25,«
...' 'u.. T
20 - %3 02" 8
oo LR] =
a
g ..0.0. 0..... IOOc\IA
S o{ieins 5
> ‘.o..o‘ oo.o.‘ »
....0.\ ,...... é
.oo.. .'..' 075 =
20 - .u‘ ‘o. g
C..' .'. Q=)
o:o.. ..o:o =
40 s G Xy 0.50
—60 - .:......::.‘a;... .0:..:... ,..o:o 0.25
et S et
80
T T T T T T T T T 000
-80 60 —40 20 0 20 40 60 80
X (cm)

Figure 11. Converged neutron flux distribution on the midplane of the Empire problem
using the ST method, obtained on 100 nodes of Frontier with 10° histories/cycle/GCD, with
120 inactive and 120 active cycles. Statistical uncertainties on this slice are all less than
0.10%.

Table 7. GPU to CPU performance comparison for the Empire problem on Frontier, with
10° histories/cycle/GCD. Speedup is defined as the ratio of the GPU tracking rate using all
GPUs on a single node to the CPU tracking rate using all CPU cores on a single node.

Cycle GPU tracking CPU core Speedup

type rate equivs.
(histories/s/GCD) per GCD

Inactive 4.74 x 10* 15.9 2.27

Active 4.33 x 10* 14.8 2.12

DP, SP, and ST methods spent 2.45x, 1.50x, and 2.02x more time, respectively,
in tracking kernels in inactive cycles on Frontier compared to RTK. However,
although inactive cycles on this fresh fuel problem represent the maximum time spent
performing tracking operations, these methods still achieved 77.8%, 91.2%, and 83.4%,
respectively, of the RTK tracking rate on Frontier. On the NVIDIA V100 (i.e., a

Prepared using sagej.cls

35

Biondo et al.

le—6

90IN0S UOTSSI)

° . N < *® 2 b N <
— — — — (=3 (=] (=3 =3 (=}
oooo-onoo B
ORI LTI DR
.......
e e e 0 s 8 00
S0 00 _ 0888 2000 _ 000
.
'o-oooooo-o-o-oo-o-o-oo-o-o-oo |
OROR T L DROROR L NORORT L 7AOR R LI TRORO8:
S8 8 8 S 888 S0 S e
.................Q..
L. L . . e e L
. e (e o . ()
o L () . -
....I...........I
son e nn el e e e e’ e e e e e e e e
..............‘......
.............‘.I
P e Bt
...............
(e (e ()
AOROR LR TROROR T L
LB e e e e
e ehe B tasn Rt N abehess Sebsoshss
........'.II..‘........
o-ooooococooo-ooococoooooco B
S 8 08 S0 88 e e
S e e e e
...‘....
LR arese ol
teene? B
T T T T T T T T T
(=3 =3 =3 (=3 (=] f=3 =3 =3 (=3
= ¢ 5 8 & F % %
(o) £

X (cm)

Figure 12. Converged fission source distribution on the midplane of the Empire problem

using the ST method, obtained on 100 nodes of Frontier with 10° histories/cycle/GCD, with

120 inactive and 120 active cycles. Statistical uncertainties on this slice are all less than

0.25%.

Prepared using sagej.cls

36 The International Journal of High Performance Computing Applications XX(X)

Summit GPU), it appears that performance differences between the methods can be
explained by differences in device occupancy and pressure on the instruction cache.
On the AMD MI250X (i.e., a Frontier GPU), occupancy was more weakly correlated
to performance. It is concluded that any of these three methods—which unlike RTK
can handle arbitrarily nested configurations—are suitable for production-level use,
provided that the fraction of runtime required by tracking operations is consistent with
the typical fission problems explored in this work (around 20%). For problems with
geometric complexity far beyond these cases (perhaps outside of fission applications),
tracking performance differences become more important, and the DP method should
be avoided as it offers neither the performance of the SP method nor the convenience of
the ST method. Broadly speaking, these results indicate that polymorphism can still be
effectively employed on the GPU, provided that it can be done without virtual function
calls. Improvements to GPU compilers may eliminate this limitation.

The SP method outperformed the DP and ST methods in nearly all cases. However,
the ST method achieved over 90% of the SP method’s tracking rate in all cases, and
unlike the SP method, it requires only a single CSG tracker. The flexibility of this
approach was demonstrated with the Empire microreactor, a hexagonal array-based
reactor which cannot be represented using RTK, and would require an additional
GPU-based hexagonal array tracker to be written in order to use the SP method. On
Frontier, the ST method was used to produce converged keg, neutron flux, and fission
source results, and an overall speedup of 2.19x over CPU execution was obtained.
This work will facilitate GPU-based MC transport for reactor problems with geometric
complexity beyond rectilinear arrays, as well as other non-reactor radiation transport

problems with complex nested geometries.

Funding

This research was supported by the Exascale Computing Project (ECP), project number 17-
SC-20-SC. The ECP is a collaborative effort of two DOE organizations, the Office of Science
and the National Nuclear Security Administration, that are responsible for the planning and
preparation of a capable exascale ecosystem—including software, applications, hardware,
advanced system engineering, and early testbed platforms—to support the nation’s exascale

computing imperative.

Acknowledgements

The authors would like to thank Stuart Slattery and Friederike Bostelmann for their internal

technical reviews.

Prepared using sagej.cls

Biondo et al. 37

References

Andreades C, Cisneros AT, Choi JK, Chong AYK, Fratoni M, Hong S, Huddar LR, Huff KD,
Kendrick J, Krumwiede DL, Laufer MR, Munk M, Scarlat RO and Zweibau N (2016)
Design summary of the Mark-I pebble-bed, fluoride salt-cooled, high-temperature reactor
commercial power plant. Nuclear Technology 195(3): 223-238. DOI:10.13182/NT16-2.

Bentley JL (1975) Multidimensional binary search trees used for associative searching.
Communications of the Association for Computing Machinery 18(9): 509-517. DOL:
10.1145/361002.361007.

Betzler BR et al. (2020) Transformational Challenge Reactor preliminary core design report.
Technical Report ORNL/TM-2020/1718, Oak Ridge National Laboratory.

Black GA, Aydogan F and Koerner CL (2019) Economic viability of light water small modular
nuclear reactors: General methodology and vendor data. Renewable and Sustainable Energy
Reviews 103: 248-258. DOI:10.1016/j.rser.2018.12.041.

Center for Sustainable Systems (2022) Nuclear energy factsheet. Technical Report Pub. No.
CSS11-15., University of Michigan.

Ericson C (2004) Real-Time Collision Detection. The Morgan Kaufmann Series in Interactive
3D Technology. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Habush A and Harris A (1968) 330-MW(e) Fort St. Vrain high-temperature gas-cooled reactor.
Nuclear Engineering and Design 7(4): 312-321. DOI:10.1016/0029-5493(68)90064-2.
Hamilton SP and Evans TM (2019) Continuous-energy Monte Carlo neutron transport on GPUs

in the Shift code. Annals of Nuclear Energy 128: 236-247.

Harper SM, Romano PK, Forget B and Smith KS (2020) Threadsafe dynamic neighbor lists for
Monte Carlo ray tracing. Nuclear Science and Engineering 194(11): 1009-1015. DOI:
10.1080/00295639.2020.1719765.

Hejzlar P, Petroski R, Cheatham J, Touran N, Cohen M, Truong B, Latta R, Werner M, Burke
T, Tandy J, Garrett M, Johnson B, Ellis T, McWhirter J, Odedra A, Schweiger P, Adkisson
D and Gilleland J (2013) Terrapower, LLC traveling wave reactor development program
overview. Nuclear Engineering and Technology 45(6): 731-744. DOI:10.5516/NET.02.
2013.520.

Johnson S, Tognini S, Canal P, Evans T, Jun S, Lima G, Lund A and Pascuzzi V (2021) Novel
features and GPU performance analysis for EM particle transport in the Celeritas code. EPJ
Web of Conferences 251(03030). DOI:10.1051/epjconf/202125103030.

Johnson SR, Lefebvre R and Bekar K (2023) ORANGE: Oak Ridge Advanced Nested Geometry
Engine. Technical Report ORNL/TM-2023/3190, Oak Ridge National Laboratory.

Prepared using sagej.cls

38 The International Journal of High Performance Computing Applications XX(X)

Juarez R, Pedroche G, Loughlin MJ, Pampin R, Martinez P, De Pietri M, Alguacil J, Ogando F,
Sauvan P, Lopez-Revelles AJ, KolSek A, Polunovskiy E, Fabbri M and Sanz J (2021) A full
and heterogeneous model of the ITER tokamak for comprehensive nuclear analyses. Nature
Energy 6(2): 150-157. DOI:10.1038/s41560-020-00753-x.

Kos B, Radulescu G, Grove R, Villari R and Batistoni P (2023) Comprehensive analysis
of streaming and shutdown dose rate experiments at JET with ORNL fusion neutronics
workflows. Fusion Science and Technology 79(3): 284-304. DOI:10.1080/15361055.2022.
2129182.

Lee C, Jung YS, Zhong Z, Ortensi J, Laboure V, Wang Y and DeHart M (2020) Assessment of
the Griffin reactor multiphysics application using the Empire micro reactor design concept.
Technical Report ANL/NSE-20/23 and INL/LTD-20-59263, Argonne National Laboratory
and Idaho National Laboratory.

Lieberoth J (1968) Monte Carlo technique to solve the static eigenvalue problem of the
Boltzmann transport equation. Technical report, INTERATOM, Bensberg, Germany.

Matthews C, Laboure V, DeHart M, Hansel J, Andrs D, Wang Y, Ortensi J and Martineau
RC (2021) Coupled multiphysics simulations of heat pipe microreactors using DireWolf.
Nuclear Technology 207(7): 1142-1162. DOI:10.1080/00295450.2021.1906474.

Merzari E, Hamilton S, Evans T, Min M, Fischer P, Kerkemeier S, Fang J, Romano P, Lan
YH, Phillips M, Biondo E, Royston K, Warburton T, Chalmers N and Rathnayake T (2023)
Exascale multiphysics nuclear reactor simulations for advanced designs. In: Proceedings
of the International Conference for High Performance Computing, Networking, Storage
and Analysis, SC *23. New York, NY, USA: Association for Computing Machinery. DOI:
10.1145/3581784.3627038.

Mulder E and Boyes W (2020) Neutronics characteristics of a 165 MWth Xe-100 reactor.
Nuclear Engineering and Design 357. DOI:10.1016/j.nucengdes.2019.110415.

Nelson NB, Smith MBR, Karriem Z, Navarro J, Denbrock CP, Wahlen RN and Grimm TL (2022)
Radiation shielding analysis of Niowave’s uranium target assembly 2 (UTA-2) facility for
molybdenum-99 production. Technical Report ORNL/TM-2021/2269, Oak Ridge National
Laboratory. DOI:10.2172/1878714.

NuScale Power L (2023) About us. URL https://www.nuscalepower.com/en/
about.

Oak Ridge Leadership Computing Facility (2023a) Frontier. URL https://www.olcf.
ornl.gov/olcf-resources/compute-systems/frontier.

Oak Ridge Leadership Computing Facility (2023b) Summit: Oak Ridge National Lab-
oratory’s 200 petaflop supercomputer. URL https://www.olcf.ornl.gov/

olcf-resources/compute-systems/summit.

Prepared using sagej.cls

https://www.nuscalepower.com/en/about
https://www.nuscalepower.com/en/about
https://www.olcf.ornl.gov/olcf-resources/compute-systems/frontier
https://www.olcf.ornl.gov/olcf-resources/compute-systems/frontier
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit

Biondo et al. 39

OpenClipart (2023) Outline map of American states. URL https://freesvg.org/
outline-map-of—-american—-states.

Pandya TM, Johnson SR, Evans TM, Davidson GG, Hamilton SP and Godfrey AT (2016)
Implementation, capabilities, and benchmarking of Shift, a massively parallel Monte Carlo
radiation transport code. Journal of Computational Physics 308: 239-272. DOI:10.1016/j.
jcp.2015.12.037.

Radel T and Van Abel E (2016) Validation of MCNP5 for use in calculating temperature
coefficients of reactivity for the SHINE system. Transactions of the American Nuclear
Society 114(1).

Smith K (2017) NuScale small modular reactor (SMR) progression problems for the ExaSMR
project. Milestone Report WBS 1.2.1.08 ECP-SE-08-43, Exascale Computing Project.

von Mises R and Pollaczek-Geiringer H (1929) Praktische verfahren der gleichungsauflosung.
Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik 9: 152—164.

Wiichter C and Keller A (2006) Instant ray tracing: The bounding interval hierarchy. In: Akenine-
Moeller T and Heidrich W (eds.) Symposium on Rendering. The Eurographics Association.
ISBN 3-905673-35-5. DOI:10.2312/EGWR/EGSR06/139-149.

Wald I (2007) On fast construction of SAH-based bounding volume hierarchies. In: 2007 IEEE
Symposium on Interactive Ray Tracing. pp. 33—40. DOI:10.1109/RT.2007.4342588.

West JT III, Petrie LM and Fraley SK (1979) KENO-IV/CG, the combinatorial geometry version
of the Keno Monte Carlo criticality safety program. Technical Report NUREG/CR-0709,
ORNL/NUREG/CSD-7, Oak Ridge National Laboratory.

Zhang M, Alawneh A and Rogers TG (2021) Characterizing massively parallel polymorphism.
In: 2021 IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS). pp. 205-216. DOI:10.1109/ISPASS51385.2021.00037.

Prepared using sagej.cls

https://freesvg.org/outline-map-of-american-states
https://freesvg.org/outline-map-of-american-states

	1 Introduction
	2 Background
	2.1 Neutron transport equation
	2.2 Monte Carlo power iteration
	2.3 GPU-based implementation in Shift

	3 Tracking algorithms
	3.1 Single universe tracking
	3.2 Multi-universe CPU tracking in ORANGE
	3.3 RTK tracking

	4 Methodology: Multi-universe GPU tracking methods
	4.1 Dynamic polymorphism (DP) method
	4.2 Static polymorphism (SP) method
	4.3 Single tracker (ST) method

	5 Hardware description
	6 Performance testing
	6.1 Tracking rate results
	6.2 Performance of individual tracking kernels
	6.3 GPU to CPU performance comparison
	6.4 Profiling
	6.5 Verification

	7 Demonstration problem
	8 Conclusion

